Density Features of Screened Lung Tumors in Low-Dose Computed Tomography

被引:5
作者
Shen, Wei-Chih [1 ]
Liu, Juhn-Cherng [2 ,8 ]
Shieh, Shwn-Huey [9 ]
Yang, Su-Tso [2 ,10 ]
Tseng, Guan-Chin [3 ]
Hsu, Wu-Huei [4 ,12 ]
Chen, Chih-Yi [5 ,7 ]
Yu, Yang-Hao [6 ,11 ,12 ]
机构
[1] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[2] China Med Univ Hosp, Dept Radiol, Taichung 40447, Taiwan
[3] China Med Univ Hosp, Dept Pathol, Taichung 40447, Taiwan
[4] China Med Univ Hosp, Dept Internal Med, Taichung 40447, Taiwan
[5] China Med Univ Hosp, Div Thorac Surg, Taichung 40447, Taiwan
[6] China Med Univ Hosp, Div Pulm & Crit Care Med, Taichung 40447, Taiwan
[7] China Med Univ Hosp, Ctr Canc, Taichung 40447, Taiwan
[8] China Med Univ, Dept Biomed Imaging & Radiol Sci, Taichung, Taiwan
[9] China Med Univ, Dept Hlth Serv Adm, Taichung, Taiwan
[10] China Med Univ, Coll Chinese Med, Sch Chinese Med, Taichung, Taiwan
[11] China Med Univ, Grad Inst Clin Med Sci, Taichung, Taiwan
[12] China Med Univ, Sch Med, Taichung, Taiwan
关键词
Density feature; low-dose computed tomography; lung tumor; computer-aided diagnosis; GROUND-GLASS OPACITY; PULMONARY NODULES; CT; CANCER; AGREEMENT; BEHAVIOR; IMPACT; LEVEL; TRIAL; IMAGE;
D O I
10.1016/j.acra.2013.09.021
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: Using low-dose computed tomography (LDCT), small and heterogeneous lung tumors are detected in screening. The criteria for assessing detected tumors are crucial for determining follow-up or resection strategies. The purpose of this study was to investigate the capacity of density features in differentiating lung tumors. Materials and Methods: From July 2008 to December 2011, 48 surgically confirmed tumors (29 malignancies, comprising 17 cases of adenocarcinoma and 12 cases of adenocarcinoma in situ [AdIs], and 19 benignancies, comprising 11 cases of atypical adenomatous hyperplasia [AAH] and eight cases of benign non-AAH) in 38 patients were retrospectively evaluated, indicating that the positive predictive value (PPV) of physicians is 60.4% (29/48). Three types of density features, tumor disappearance rate (TDR), mean, and entropy, were obtained from the CT values of detected tumors. Results: Entropy is capable of differentiating malignancy from benignancy but is limited in differentiating AdIs from benign non-AAH. The combination of entropy and TDR is effective for predicting malignancy with an accuracy of 87.5% (42/48) and a PPV of 89.7% (26/29), improving the PPV of physicians by 29.3%. The combination of entropy and mean adequately clarifies the four pathology groups with an accuracy of 72.9% (35/48). For tumors with a mean below -400 Hounsfield units, the criterion of an entropy larger than 5.4 might be appropriate for diagnosing malignancy. For others, the pathology is either benign non-AAH or adenocarcinoma; adenocarcinoma has a higher entropy than benign non-AAH, with the exception of tuberculoma. Conclusions: Combining density features enables differentiating heterogeneous lung tumors in LDCT.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 34 条
[31]   International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma [J].
Travis, William D. ;
Brambilla, Elisabeth ;
Noguchi, Masayuki ;
Nicholson, Andrew G. ;
Geisinger, Kim R. ;
Yatabe, Yasushi ;
Beer, David G. ;
Powell, Charles A. ;
Riely, Gregory J. ;
Van Schil, Paul E. ;
Garg, Kavita ;
Austin, John H. M. ;
Asamura, Hisao ;
Rusch, Valerie W. ;
Hirsch, Fred R. ;
Scagliotti, Giorgio ;
Mitsudomi, Tetsuya ;
Huber, Rudolf M. ;
Ishikawa, Yuichi ;
Jett, James ;
Sanchez-Cespedes, Montserrat ;
Sculier, Jean-Paul ;
Takahashi, Takashi ;
Tsuboi, Masahiro ;
Vansteenkiste, Johan ;
Wistuba, Ignacio ;
Yang, Pan-Chyr ;
Aberle, Denise ;
Brambilla, Christian ;
Flieder, Douglas ;
Franklin, Wilbur ;
Gazdar, Adi ;
Gould, Michael ;
Hasleton, Philip ;
Henderson, Douglas ;
Johnson, Bruce ;
Johnson, David ;
Kerr, Keith ;
Kuriyama, Keiko ;
Lee, Jin Soo ;
Miller, Vincent A. ;
Petersen, Iver ;
Roggli, Victor ;
Rosell, Rafael ;
Saijo, Nagahiro ;
Thunnissen, Erik ;
Tsao, Ming ;
Yankelewitz, David .
JOURNAL OF THORACIC ONCOLOGY, 2011, 6 (02) :244-285
[32]   Impact of computed tomography screening for lung cancer on participants in a randomized controlled trial (NELSON trial) [J].
van den Bergh, Karien A. M. ;
Essink-Bot, Marie-Louise ;
Bunge, Eveline M. ;
Scholten, Ernst Th. ;
Prokop, Mathias ;
van Iersel, Carola A. ;
van Klaveren, Rob J. ;
de Koning, Harry J. .
CANCER, 2008, 113 (02) :396-404
[33]   WATERSHEDS IN DIGITAL SPACES - AN EFFICIENT ALGORITHM BASED ON IMMERSION SIMULATIONS [J].
VINCENT, L ;
SOILLE, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (06) :583-598
[34]   Limited value of shape, margin and CT density in the discrimination between benign and malignant screen detected solid pulmonary nodules of the NELSON trial [J].
Xu, Dong Ming ;
van Klaveren, Rob J. ;
de Bock, Geertruida H. ;
Leusveld, Anne ;
Zhao, Yingru ;
Wang, Ying ;
Vliegenthart, Rozemarijn ;
de Koning, Harry J. ;
Scholten, Ernst T. ;
Verschakelen, Johny ;
Prokop, Mathias ;
Oudkerk, Matthijs .
EUROPEAN JOURNAL OF RADIOLOGY, 2008, 68 (02) :347-352