Density Features of Screened Lung Tumors in Low-Dose Computed Tomography

被引:5
作者
Shen, Wei-Chih [1 ]
Liu, Juhn-Cherng [2 ,8 ]
Shieh, Shwn-Huey [9 ]
Yang, Su-Tso [2 ,10 ]
Tseng, Guan-Chin [3 ]
Hsu, Wu-Huei [4 ,12 ]
Chen, Chih-Yi [5 ,7 ]
Yu, Yang-Hao [6 ,11 ,12 ]
机构
[1] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[2] China Med Univ Hosp, Dept Radiol, Taichung 40447, Taiwan
[3] China Med Univ Hosp, Dept Pathol, Taichung 40447, Taiwan
[4] China Med Univ Hosp, Dept Internal Med, Taichung 40447, Taiwan
[5] China Med Univ Hosp, Div Thorac Surg, Taichung 40447, Taiwan
[6] China Med Univ Hosp, Div Pulm & Crit Care Med, Taichung 40447, Taiwan
[7] China Med Univ Hosp, Ctr Canc, Taichung 40447, Taiwan
[8] China Med Univ, Dept Biomed Imaging & Radiol Sci, Taichung, Taiwan
[9] China Med Univ, Dept Hlth Serv Adm, Taichung, Taiwan
[10] China Med Univ, Coll Chinese Med, Sch Chinese Med, Taichung, Taiwan
[11] China Med Univ, Grad Inst Clin Med Sci, Taichung, Taiwan
[12] China Med Univ, Sch Med, Taichung, Taiwan
关键词
Density feature; low-dose computed tomography; lung tumor; computer-aided diagnosis; GROUND-GLASS OPACITY; PULMONARY NODULES; CT; CANCER; AGREEMENT; BEHAVIOR; IMPACT; LEVEL; TRIAL; IMAGE;
D O I
10.1016/j.acra.2013.09.021
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: Using low-dose computed tomography (LDCT), small and heterogeneous lung tumors are detected in screening. The criteria for assessing detected tumors are crucial for determining follow-up or resection strategies. The purpose of this study was to investigate the capacity of density features in differentiating lung tumors. Materials and Methods: From July 2008 to December 2011, 48 surgically confirmed tumors (29 malignancies, comprising 17 cases of adenocarcinoma and 12 cases of adenocarcinoma in situ [AdIs], and 19 benignancies, comprising 11 cases of atypical adenomatous hyperplasia [AAH] and eight cases of benign non-AAH) in 38 patients were retrospectively evaluated, indicating that the positive predictive value (PPV) of physicians is 60.4% (29/48). Three types of density features, tumor disappearance rate (TDR), mean, and entropy, were obtained from the CT values of detected tumors. Results: Entropy is capable of differentiating malignancy from benignancy but is limited in differentiating AdIs from benign non-AAH. The combination of entropy and TDR is effective for predicting malignancy with an accuracy of 87.5% (42/48) and a PPV of 89.7% (26/29), improving the PPV of physicians by 29.3%. The combination of entropy and mean adequately clarifies the four pathology groups with an accuracy of 72.9% (35/48). For tumors with a mean below -400 Hounsfield units, the criterion of an entropy larger than 5.4 might be appropriate for diagnosing malignancy. For others, the pathology is either benign non-AAH or adenocarcinoma; adenocarcinoma has a higher entropy than benign non-AAH, with the exception of tuberculoma. Conclusions: Combining density features enables differentiating heterogeneous lung tumors in LDCT.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 34 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]  
[Anonymous], 2010, PASW STAT VERS 18
[3]  
Bushberg JT., 2011, ESSENTIAL PHYS MED I
[4]  
Chasen M H, 1986, Radiographics, V6, P793
[5]  
Cohen J., 1988, Statistical power analysis for the behavioral sciences, VSecond
[6]   Pulmonary nodules: Experimental and clinical studies at low-dose CT [J].
Diederich, S ;
Lenzen, H ;
Windmann, R ;
Puskas, Z ;
Yelbuz, TM ;
Henneken, S ;
Klaiber, T ;
Eameri, M ;
Roos, N ;
Peters, PE .
RADIOLOGY, 1999, 213 (01) :289-298
[7]   Detection of pulmonary nodules by multislice computed tomography: improved detection rate with reduced slice thickness [J].
Fischbach, F ;
Knollmann, F ;
Griesshaber, V ;
Freund, T ;
Akkol, E ;
Felix, R .
EUROPEAN RADIOLOGY, 2003, 13 (10) :2378-2383
[8]   Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage [J].
Ganeshan, Balaji ;
Abaleke, Sandra ;
Young, Rupert C. D. ;
Chatwin, Christopher R. ;
Miles, Kenneth A. .
CANCER IMAGING, 2010, 10 (01) :137-143
[9]   Lung cancer: Interobserver agreement on interpretation of pulmonary findings at low-dose CT screening [J].
Gierada, David S. ;
Pilgram, Thomas K. ;
Ford, Melissa ;
Fagerstrom, Richard M. ;
Church, Timothy R. ;
Nath, Hrudaya ;
Garg, Kavita ;
Strollo, Diane C. .
RADIOLOGY, 2008, 246 (01) :265-272
[10]   Subsolid Pulmonary Nodules and the Spectrum of Peripheral Adenocarcinomas of the Lung: Recommended Interim Guidelines for Assessment and Management [J].
Godoy, Myrna C. B. ;
Naidich, David P. .
RADIOLOGY, 2009, 253 (03) :606-622