Vibration Anomaly Detection using Deep Autoencoders for Smart Factory

被引:3
|
作者
Waters, Mark [1 ]
Waszczuk, Pawel [1 ]
Ayre, Rodney [2 ]
Dreze, Alain [2 ]
McGlinchey, Don [1 ]
Alkali, Babakalli [1 ]
Morison, Gordon [1 ]
机构
[1] Glasgow Caledonian Univ, Sch Comp Engn & Built Environm, 70 Cowcaddens Rd, Glasgow G4 0BA, Lanark, Scotland
[2] Mitsubishi Elect Air Conditioning Syst Europe LTD, Houston Ind Estate, Livingston EH54 5EQ, Scotland
来源
2022 IEEE SENSORS | 2022年
基金
“创新英国”项目;
关键词
IIoT; Smart Factory; Condition Monitoring; Autoencoder; Induction Motor; Artificial Intelligence; MOTOR FAULT-DETECTION; DIAGNOSIS;
D O I
10.1109/SENSORS52175.2022.9967320
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Early fault detection in production is crucial for manufacturing facilities to prevent unplanned downtimes and maximise the operational life of equipment. The aim of this paper is to present a method of anomaly detection for an inservice motor using self-supervised learning. The authors have developed a condition monitoring system for a Smart Factory using deep autoencoders. The system was installed in a live production facility with the goal of improving site maintenance.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Anomaly Detection in Smart Industrial Machinery Through Hidden Markov Models and Autoencoders
    Sorostinean, Radu
    Burghelea, Zaharia
    Gellert, Arpad
    IEEE ACCESS, 2024, 12 : 69217 - 69228
  • [42] Unsupervised Stacked Autoencoders for Anomaly Detection on Smart Cyber-physical Grids
    Al-Abassi, Abdulrahman
    Sakhnini, Jacob
    Karimipour, Hadis
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3123 - 3129
  • [43] Interpretability-Aware Industrial Anomaly Detection Using Autoencoders
    Jiang, Rui
    Xue, Yijia
    Zou, Dongmian
    IEEE ACCESS, 2023, 11 : 60490 - 60500
  • [44] Anomaly detection in gravitational waves data using convolutional autoencoders
    Morawski F.
    Bejger M.
    Cuoco E.
    Petre L.
    Machine Learning: Science and Technology, 2021, 2 (04):
  • [45] In-Network Processing Acoustic Data for Anomaly Detection in Smart Factory
    Wu, Huanzhuo
    Shen, Yunbin
    Xiao, Xun
    Hecker, Artur
    Fitzek, Frank H. P.
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [46] Unsupervised Anomaly Detection For Identifying Arrhythmogenic Rhythms In Atrioventricular Block Hearts Using Deep Convolutional Autoencoders
    Park, Hyeong Kyun
    Son, Young Hoon
    Kim, Nam K.
    Jang, Jeongin
    Sheng, Christina
    Choi, Dahim
    Park, Junbeom
    Cho, Hee Cheol
    Park, Sung-Jin
    CIRCULATION RESEARCH, 2023, 133
  • [47] Anomaly Detection in 5G using Variational Autoencoders
    Islam, Amanul
    Chang, Sang-Yoon
    Kim, Jinoh
    Kim, Jonghyun
    2024 SILICON VALLEY CYBERSECURITY CONFERENCE, SVCC 2024, 2024,
  • [48] ROBUREC: Building a Robust Recommender using Autoencoders with Anomaly Detection
    Aly, Ahmed
    Nawara, Dina
    Kashef, Rasha
    PROCEEDINGS OF THE 2023 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2023, 2023, : 384 - 391
  • [49] Anomaly Detection On Propulsive Systems By Global Approach Using Autoencoders
    Ferard, Bruno
    Le Gonidec, Serge
    Galeotta, Marco
    Oriol, Stephane
    Dreyer, Stephanie
    IFAC PAPERSONLINE, 2021, 54 (04): : 31 - 37
  • [50] Anomaly Detection in Industrial Software Systems Using Variational Autoencoders
    Kumarage, Tharindu
    De Silva, Nadun
    Ranawaka, Malsha
    Kuruppu, Chamal
    Ranathunga, Surangika
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM 2018), 2018, : 440 - 447