Vibration Anomaly Detection using Deep Autoencoders for Smart Factory

被引:3
|
作者
Waters, Mark [1 ]
Waszczuk, Pawel [1 ]
Ayre, Rodney [2 ]
Dreze, Alain [2 ]
McGlinchey, Don [1 ]
Alkali, Babakalli [1 ]
Morison, Gordon [1 ]
机构
[1] Glasgow Caledonian Univ, Sch Comp Engn & Built Environm, 70 Cowcaddens Rd, Glasgow G4 0BA, Lanark, Scotland
[2] Mitsubishi Elect Air Conditioning Syst Europe LTD, Houston Ind Estate, Livingston EH54 5EQ, Scotland
来源
2022 IEEE SENSORS | 2022年
基金
“创新英国”项目;
关键词
IIoT; Smart Factory; Condition Monitoring; Autoencoder; Induction Motor; Artificial Intelligence; MOTOR FAULT-DETECTION; DIAGNOSIS;
D O I
10.1109/SENSORS52175.2022.9967320
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Early fault detection in production is crucial for manufacturing facilities to prevent unplanned downtimes and maximise the operational life of equipment. The aim of this paper is to present a method of anomaly detection for an inservice motor using self-supervised learning. The authors have developed a condition monitoring system for a Smart Factory using deep autoencoders. The system was installed in a live production facility with the goal of improving site maintenance.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Deep Multi-view Representation Learning for Video Anomaly Detection Using Spatiotemporal Autoencoders
    Deepak, K.
    Srivathsan, G.
    Roshan, S.
    Chandrakala, S.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (03) : 1333 - 1349
  • [32] Deep Multi-view Representation Learning for Video Anomaly Detection Using Spatiotemporal Autoencoders
    K. Deepak
    G. Srivathsan
    S. Roshan
    S. Chandrakala
    Circuits, Systems, and Signal Processing, 2021, 40 : 1333 - 1349
  • [33] Forecasting dominance of SARS-CoV-2 lineages by anomaly detection using deep AutoEncoders
    Rancati, Simone
    Nicora, Giovanna
    Prosperi, Mattia
    Bellazzi, Riccardo
    Salemi, Marco
    Marini, Simone
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [34] An empirical evaluation of deep autoencoders for anomaly detection in the electricity consumption of buildings
    Azzalini, Davide
    Flammini, Benedetta
    Guadagno, Antonio
    Ragaini, Enrico
    Amigoni, Francesco
    ENERGY AND BUILDINGS, 2025, 327
  • [35] Isolation Forests and Deep Autoencoders for Industrial Screw Tightening Anomaly Detection
    Ribeiro, Diogo
    Matos, Luis Miguel
    Moreira, Guilherme
    Pilastri, Andre
    Cortez, Paulo
    COMPUTERS, 2022, 11 (04)
  • [36] Intelligent Crime Anomaly Detection in Smart Cities using Deep Learning
    Chackravarthy, Sharmila
    Schmitt, Steven
    Yang, Li
    2018 4TH IEEE INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC 2018), 2018, : 399 - 404
  • [37] Smart Grid Anomaly Detection using a Deep Learning Digital Twin
    Danilczyk, William
    Sun, Yan
    He, Haibo
    2020 52ND NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2021,
  • [38] Towards Efficient Deep Autoencoders for Multivariate Time Series Anomaly Detection
    Pietron, Marcin
    Zurek, Dominik
    Faber, Kamil
    Corizzo, Roberto
    COMPUTATIONAL SCIENCE, ICCS 2024, PT III, 2024, 14834 : 461 - 469
  • [39] Deep Autoencoders and Feedforward Networks Based on a New Regularization for Anomaly Detection
    Albahar, Marwan Ali
    Binsawad, Muhammad
    SECURITY AND COMMUNICATION NETWORKS, 2020, 2020
  • [40] Deep Autoencoders with Value-at-Risk Thresholding for Unsupervised Anomaly Detection
    Akhriev, Albert
    Marecek, Jakub
    2019 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2019), 2019, : 208 - 211