Vibration Anomaly Detection using Deep Autoencoders for Smart Factory

被引:3
|
作者
Waters, Mark [1 ]
Waszczuk, Pawel [1 ]
Ayre, Rodney [2 ]
Dreze, Alain [2 ]
McGlinchey, Don [1 ]
Alkali, Babakalli [1 ]
Morison, Gordon [1 ]
机构
[1] Glasgow Caledonian Univ, Sch Comp Engn & Built Environm, 70 Cowcaddens Rd, Glasgow G4 0BA, Lanark, Scotland
[2] Mitsubishi Elect Air Conditioning Syst Europe LTD, Houston Ind Estate, Livingston EH54 5EQ, Scotland
来源
2022 IEEE SENSORS | 2022年
基金
“创新英国”项目;
关键词
IIoT; Smart Factory; Condition Monitoring; Autoencoder; Induction Motor; Artificial Intelligence; MOTOR FAULT-DETECTION; DIAGNOSIS;
D O I
10.1109/SENSORS52175.2022.9967320
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Early fault detection in production is crucial for manufacturing facilities to prevent unplanned downtimes and maximise the operational life of equipment. The aim of this paper is to present a method of anomaly detection for an inservice motor using self-supervised learning. The authors have developed a condition monitoring system for a Smart Factory using deep autoencoders. The system was installed in a live production facility with the goal of improving site maintenance.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Anomaly Detection in Beehives using Deep Recurrent Autoencoders
    Davidson, Padraig
    Steininger, Michael
    Lautenschlager, Florian
    Kobs, Konstantin
    Krause, Anna
    Hotho, Andreas
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON SENSOR NETWORKS (SENSORNETS), 2020, : 142 - 149
  • [2] Anomaly Detection with Robust Deep Autoencoders
    Zhou, Chong
    Paffenroth, Randy C.
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 665 - 674
  • [3] Using Deep Autoencoders for In-vehicle Audio Anomaly Detection
    Pereira, Pedro Jose
    Coelho, Gabriel
    Ribeiro, Alexandrine
    Matos, Luis Miguel
    Nunes, Eduardo C.
    Ferreira, Andre
    Pilastri, Andre
    Cortez, Paulo
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 298 - 307
  • [4] Anomaly detection in a forensic timeline with deep autoencoders
    Studiawan, Hudan
    Sohel, Ferdous
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2021, 63
  • [5] Anomaly-based Insider Threat Detection using Deep Autoencoders
    Liu, Liu
    De Vel, Olivier
    Chen, Chao
    Zhang, Jun
    Xiang, Yang
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 39 - 48
  • [6] Smart Meter Data Anomaly Detection Using Variational Recurrent Autoencoders with Attention
    Dai, Wenjing
    Liu, Xiufeng
    Heller, Alfred
    Nielsen, Per Sieverts
    INTELLIGENT TECHNOLOGIES AND APPLICATIONS, 2022, 1616 : 311 - 324
  • [7] A Comparative Study of Deep-Learning Autoencoders (DLAEs) for Vibration Anomaly Detection in Manufacturing Equipment
    Lee, Seonwoo
    Kareem, Akeem Bayo
    Hur, Jang-Wook
    ELECTRONICS, 2024, 13 (09)
  • [8] Deep Autoencoders for Unsupervised Anomaly Detection in Wildfire Prediction
    Ustek, Irem
    Arana-Catania, Miguel
    Farr, Alexander
    Petrunin, Ivan
    EARTH AND SPACE SCIENCE, 2024, 11 (11)
  • [9] Anomaly Detection in Medical Imaging With Deep Perceptual Autoencoders
    Shvetsova, Nina
    Bakker, Bart
    Fedulova, Irina
    Schulz, Heinrich
    Dylov, Dmitry V.
    IEEE ACCESS, 2021, 9 : 118571 - 118583
  • [10] Deep set autoencoders for anomaly detection in particle physics
    Ostdiek, Bryan
    SCIPOST PHYSICS, 2022, 12 (01):