Scaled X-bar TiN/HfO2/TiN RRAM cells processed with optimized plasma enhanced atomic layer deposition (PEALD) for TiN electrode

被引:8
作者
Chen, Y. Y. [1 ,2 ]
Goux, L. [1 ]
Pantisano, L. [1 ]
Swerts, J. [1 ]
Adelmann, C. [1 ]
Mertens, S. [1 ]
Afanas'ev, V. V. [3 ]
Wang, X. P. [1 ]
Govoreanu, B. [1 ]
Degraeve, R. [1 ]
Kubicek, S. [1 ]
Paraschiv, V. [1 ]
Verbrugge, B. [1 ]
Jossart, N. [1 ]
Altimime, L. [1 ]
Jurczak, M. [1 ]
Kittl, J. [1 ]
Groeseneken, G. [1 ,2 ]
Wouters, D. J. [1 ,2 ]
机构
[1] IMEC, Kapeldreef 75, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Elect Engn ESAT, Louvain, Belgium
[3] Katholieke Univ Leuven, Dept Phys, Louvain, Belgium
关键词
HfO2; RRAM; Bipolar switching; Plasma pre-treatment; PEALD TiN;
D O I
10.1016/j.mee.2013.02.087
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We proposed a new, simpler, and fully BEOL CMOS-compatible TIN/HfO2/TiN RRAM stack using the Plasma Enhanced Atomic Layer Deposition (PEALD) for the top-electrode TiN processing, demonstrating attractive bipolar switching properties (by positive RESET voltage to the PEALD TiN) in a functional size down to 2275 nm(2) (35 nm x 65 nm). Stable switching was observed between a High-Resistive State HRS (similar to 1 M Omega) and a Low-Resistive State LRS (similar to 100 k Omega), using a low program current of similar to 1 mu A. Two different LRS states can be obtained depending on the current compliance (CC) during SET switching, either 100 mu A (high-CC LRS) or 10 mu A (low-CC LRS), resulting, respectively in LRS resistances of 10 k Omega or 100 k Omega. The projected retention stability of low-CC LRS is >= 10 years at 80 degrees C, which is the retention minimum of the TiN/HfO2/TiN RRAM stack. The temperature-dependent resistance showed a non-metallic behavior for the low-CC LRS state (similar to 100 k Omega), suggesting gentle filament formation. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 96
页数:5
相关论文
共 8 条
[1]  
[Anonymous], IEEE ELECT DEVICE LE
[2]  
Baek IG, 2005, INT EL DEVICES MEET, P769
[3]  
Chen Y. S., 2009, IEDM, P105
[4]   Bipolar Switching Characteristics and Scalability in NiO Layers Made by Thermal Oxidation of Ni [J].
Goux, L. ;
Polspoel, W. ;
Lisoni, J. G. ;
Chen, Y. -Y ;
Pantisano, L. ;
Wang, X. -P. ;
Vandervorst, W. ;
Jurczak, M. ;
Wouters, D. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (08) :G187-G192
[5]   Optimized Ni Oxidation in 80-nm Contact Holes for Integration of Forming-Free and Low-Power Ni/NiO/Ni Memory Cells [J].
Goux, Ludovic ;
Lisoni, Judit G. ;
Wang, Xin Peng ;
Jurczak, Malgorzata ;
Wouters, Dirk J. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (10) :2363-2368
[6]  
Lee H, 2008, STUD COMPUT INTELL, V110, P1, DOI 10.1109/IEDM.2008.4796677
[7]   Control of filament size and reduction of reset current below 10 μA in NiO resistance switching memories [J].
Nardi, F. ;
Ielmini, D. ;
Cagli, C. ;
Spiga, S. ;
Fanciulli, M. ;
Goux, L. ;
Wouters, D. J. .
SOLID-STATE ELECTRONICS, 2011, 58 (01) :42-47
[8]   Memristive switching mechanism for metal/oxide/metal nanodevices [J].
Yang, J. Joshua ;
Pickett, Matthew D. ;
Li, Xuema ;
Ohlberg, Douglas A. A. ;
Stewart, Duncan R. ;
Williams, R. Stanley .
NATURE NANOTECHNOLOGY, 2008, 3 (07) :429-433