Milk ingestion stimulates net muscle protein synthesis following resistance exercise

被引:157
作者
Elliot, TA
Cree, MG
Sanford, AP
Wolfe, RR
Tipton, KD
机构
[1] Univ Texas, Med Branch, Metab Unit, Shriners Hosp Children, Galveston, TX 77550 USA
[2] Univ Texas, Med Branch, Dept Surg, Galveston, TX 77550 USA
关键词
amino acid uptake; muscle biosies;
D O I
10.1249/01.mss.0000210190.64458.25
中图分类号
G8 [体育];
学科分类号
04 ; 0403 ;
摘要
Purpose: Previous studies have examined the response of muscle protein to resistance exercise and nutrient ingestion. Net muscle protein synthesis results from the combination of resistance exercise and amino acid intake. No study has examined the response of muscle protein to ingestion of protein in the context of a food. This study was designed to determine the response of net muscle protein balance following resistance exercise to ingestion of nutrients as components of milk. Method: Three groups of volunteers ingested one of three milk drinks each: 237 g of fat-free milk (FM), 237 g of whole milk (WM). and 393 g of fat-free milk isocaloric with the WM (IM). Milk was ingested 1 h following a leg resistance exercise routine. Net muscle protein balance was determined by measuring amino acid balance across the leg. Results: Arterial concentrations of representative amino acids increased in response to milk ingestion. Threonine balance and phenylalanine balance were both > 0 following milk ingestion. Net amino acid uptake for threonine was 2.8-fold greater (P < 0.05) for WM than for FM. Mean uptake of phenylalanine was 80 and 85% greater for WM and IM, respectively, than for FM. but not statistically different. Threonine uptake relative to ingested was significantly (P < 0.05) higher for WM (21 +/- 6%) than FM (11 +/- 5%), but not IM (12 +/- 3%). Mean phenylalanine uptake/ingested also wits greatest for WM, but not significantly. Conclusions: Ingestion of milk following resistance exercise results in phenylalanine and threonine uptake, representative of net muscle protein synthesis. These results suggest that whole milk may have increased utilization of available amino acids for protein synthesis.
引用
收藏
页码:667 / 674
页数:8
相关论文
empty
未找到相关数据