Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array

被引:174
作者
Monakhova, Kristina [1 ]
Yanny, Kyrollos [2 ]
Aggarwal, Neerja [1 ]
Waller, Laura [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, UCB UCSF Joint Grad Program Bioengn, Berkeley, CA 94720 USA
来源
OPTICA | 2020年 / 7卷 / 10期
基金
美国国家科学基金会;
关键词
SPECTROSCOPY; ALGORITHM; SYSTEM; CAMERA;
D O I
10.1364/OPTICA.397214
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hyperspectral imaging is useful for applications ranging from medical diagnostics to agricultural crop monitoring; however, traditional scanning hyperspectral imagers are prohibitively slow and expensive for widespread adoption. Snapshot techniques exist but are often confined to bulky benchtop setups or have lowspatio-spectral resolution. In this paper, we propose a novel, compact, and inexpensive computational camera for snapshot hyperspectral imaging. Our system consists of a tiled spectral filter array placed directly on the image sensor and a diffuser placed close to the sensor. Each point in the world maps to a unique pseudorandom pattern on the spectral filter array, which encodes multiplexed spatio-spectral information. By solving a sparsity-constrained inverse problem, we recover the hyperspectral volume with sub-super-pixel resolution. Our hyperspectral imaging framework is flexible and can be designed with contiguous or non-contiguous spectral filters that can be chosen for a given application. We provide theory for system design, demonstrate a prototype device, and present experimental results with high spatio-spectral resolution. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1298 / 1307
页数:10
相关论文
共 49 条
[1]   Hyperspectral imaging and quantitative analysis for prostate cancer detection [J].
Akbari, Hamed ;
Halig, Luma V. ;
Schuster, David M. ;
Osunkoya, Adeboye ;
Master, Viraj ;
Nieh, Peter T. ;
Chen, Georgia Z. ;
Fei, Baowei .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (07)
[2]  
[Anonymous], 2017, Dirty pixels: Optimizing image classification architectures for raw sensor data
[3]  
[Anonymous], 2010, Hyperspectral imaging for food quality analysis and control: Elsevier
[4]  
Antipa N., 2017, IMAGING APPL OPTICS
[5]  
Antipa N., 2019, 2019 IEEEE INT C COM, P1
[6]   DiffuserCam: lensless single-exposure 3D imaging [J].
Antipa, Nick ;
Kuo, Grace ;
Heckel, Reinhard ;
Mildenhall, Ben ;
Bostan, Emrah ;
Ng, Ren ;
Waller, Laura .
OPTICA, 2018, 5 (01) :1-9
[7]   FlatCam: Thin, Lensless Cameras Using Coded Aperture and Computation [J].
Asif, M. Salman ;
Ayremlou, Ali ;
Sankaranarayanan, Aswin ;
Veeraraghavan, Ashok ;
Baraniuk, Richard G. .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (03) :384-397
[8]   Miniature spectroscopic instrumentation: Applications to biology and chemistry [J].
Bacon, CP ;
Mattley, Y ;
DeFrece, R .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (01) :1-16
[9]   Compact Single-Shot Hyperspectral Imaging Using a Prism [J].
Baek, Seung-Hwan ;
Kim, Incheol ;
Gutierrez, Diego ;
Kim, Min H. .
ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (06)
[10]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202