Competing phases of interacting electrons on triangular lattices in moire heterostructures

被引:73
作者
Classen, Laura [1 ]
Honerkamp, Carsten [2 ,3 ]
Scherer, Michael M. [4 ]
机构
[1] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA
[2] Rhein Westfal TH Aachen, Inst Theoret Festkorperphys, Aachen, Germany
[3] JARA Fundamentals Future Informat Technol, Julich, Germany
[4] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
关键词
FUNCTIONAL RENORMALIZATION-GROUP; GRAPHENE; SUPERCONDUCTIVITY; REALIZATION; INSULATOR; MODEL;
D O I
10.1103/PhysRevB.99.195120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the quantum many-body instabilities of interacting electrons with SU(2) x SU(2) symmetry in spin and orbital degrees of freedom on the triangular lattice near van-Hove filling. Our work is motivated by effective models for the flat bands in hexagonal moire heterostructures like twisted bilayer boron nitride and trilayer graphene-boron nitride systems. We consider an extended Hubbard model including onsite Hubbard and Hund's couplings, as well as nearest-neighbor exchange interactions, and analyze the different ordering tendencies with the help of an unbiased functional renormalization group approach. We find three classes of instabilities controlled by the filling and bare interactions. For a nested Fermi surface at van-Hove filling, Hund-like couplings induce a weak instability towards spin or orbital density wave phases. An SU(4) exchange interaction moves the system towards a Chern insulator, which is robust with respect to perturbations from Hund-like interactions or deviations from perfect nesting. Further, in an extended range of fillings and interactions, we find topological d +/- id and (spin-singlet)-(orbital-singlet) f-wave superconductivity.
引用
收藏
页数:10
相关论文
共 52 条
[1]   Moire bands in twisted double-layer graphene [J].
Bistritzer, Rafi ;
MacDonald, Allan H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (30) :12233-12237
[2]   Chiral d-wave superconductivity in doped graphene [J].
Black-Schaffer, Annica M. ;
Honerkamp, Carsten .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (42)
[3]   Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis [J].
Brihuega, I. ;
Mallet, P. ;
Gonzalez-Herrero, H. ;
de laissardiere, G. Trambly ;
Ugeda, M. M. ;
Magaud, L. ;
Gomez-Rodriguez, J. M. ;
Yndurain, F. ;
Veuillen, J. -Y. .
PHYSICAL REVIEW LETTERS, 2012, 109 (19)
[4]   Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Demir, Ahmet ;
Fang, Shiang ;
Tomarken, Spencer L. ;
Luo, Jason Y. ;
Sanchez-Yamagishi, Javier D. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Ashoori, Ray C. ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :80-+
[5]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[6]  
Chen G., ARXIV190104621
[7]   Evidence of a gate-tunable Mott insulator in a trilayer graphene moire superlattice [J].
Chen, Guorui ;
Jiang, Lili ;
Wu, Shuang ;
Lyu, Bosai ;
Li, Hongyuan ;
Chittari, Bheema Lingam ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Shi, Zhiwen ;
Jung, Jeil ;
Zhang, Yuanbo ;
Wang, Feng .
NATURE PHYSICS, 2019, 15 (03) :237-241
[8]   Gate-Tunable Topological Flat Bands in Trilayer Graphene Boron-Nitride Moire Superlattices [J].
Chittari, Bheema Lingam ;
Chen, Guorui ;
Zhang, Yuanbo ;
Wang, Feng ;
Jung, Jeil .
PHYSICAL REVIEW LETTERS, 2019, 122 (01)
[9]   Phases of a phenomenological model of twisted bilayer graphene [J].
Dodaro, J. F. ;
Kivelson, S. A. ;
Schattner, Y. ;
Sun, X. Q. ;
Wang, C. .
PHYSICAL REVIEW B, 2018, 98 (07)
[10]   Unconventional topological superconductivity and phase diagram for an effective two-orbital model as applied to twisted bilayer graphene [J].
Fidrysiak, M. ;
Zegrodnik, M. ;
Spalek, J. .
PHYSICAL REVIEW B, 2018, 98 (08)