Intelligent fault diagnosis of rolling bearings using a semi-supervised convolutional neural network

被引:25
|
作者
Wu, Yaochun [1 ,2 ]
Zhao, Rongzhen [1 ]
Jin, Wuyin [1 ]
He, Tianjing [1 ]
Ma, Sencai [1 ]
Shi, Mingkuan [1 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
[2] Anyang Inst Technol, Sch Mech Engn, Anyang 455000, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Convolutional neural network; Semi-supervised learning; Maximum margin criterion; Intelligent fault diagnosis; Rolling bearing; ROTATING MACHINERY;
D O I
10.1007/s10489-020-02006-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The success of convolutional neural networks (CNNs) in intelligent fault diagnosis is largely dependent on massive amounts of labelled data. In a real-world case, however, massive amounts of labelled data are difficult or costly to collect, whereas abundant unlabelled data are often available. To utilize such unlabelled data, a novel method using a semi-supervised convolutional neural network (SSCNN) for intelligent fault diagnosis of bearings is proposed. First, a 1-d CNN is applied to learn class space features and generate class probabilities of unlabelled samples, based on which a class probability maximum margin criterion (CPMMC) method is used to construct the loss function of unlabelled samples. Then, the constructed loss function, which aims to maximise the inter-class distance of class space features and minimise the intra-class distance of class space features, is integrated into the cross-entropy loss function of the CNN, and the SSCNN is established. Finally, the SSCNN model is applied to analyse the vibration signals collected from rolling bearings, and a novel intelligent fault diagnosis method using the SSCNN is proposed. Two datasets are employed to validate the effectiveness of the proposed methodology. The results show that the established SSCNN can effectively utilise unlabelled samples to train the model and enhance its fault diagnosis performance. Through a comparison with commonly used semi-supervised deep learning methods, the superiority of the proposed method is validated.
引用
收藏
页码:2144 / 2160
页数:17
相关论文
共 50 条
  • [31] Semi-Supervised Cerebrovascular Segmentation by Hierarchical Convolutional Neural Network
    Zhao, Fengjun
    Chen, Yibing
    Chen, Fei
    He, Xuelei
    Cao, Xin
    Hou, Yuqing
    Yi, Huangjian
    He, Xiaowei
    Liang, Jimin
    IEEE ACCESS, 2018, 6 : 67841 - 67852
  • [32] Rolling bearing fault diagnosis based on probabilistic mixture model and semi-supervised ladder network
    Ding, Xu
    Lu, Xuesong
    Wang, Dong
    Lv, Qingzhou
    Zhai, Hua
    ADVANCES IN MECHANICAL ENGINEERING, 2020, 12 (12)
  • [33] SSPENet: Semi-supervised prototype enhancement network for rolling bearing fault diagnosis under limited labeled samples
    Yao, Xuejian
    Lu, Xingchi
    Jiang, Quansheng
    Shen, Yehu
    Xu, Fengyu
    Zhu, Qixin
    ADVANCED ENGINEERING INFORMATICS, 2024, 61
  • [34] Fault diagnosis of rolling bearings based on a multi branch depth separable convolutional neural network
    Liu H.
    Yao D.
    Yang J.
    Zhang J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (10): : 95 - 102
  • [35] Fault Diagnosis of Rolling Bearing Using Wireless Sensor Networks and Convolutional Neural Network
    Hou, Liqun
    Li, Zijing
    Qu, Huaisheng
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (11) : 32 - 44
  • [36] Rolling element bearing fault diagnosis using convolutional neural network and vibration image
    Hoang, Duy-Tang
    Kang, Hee-Jun
    COGNITIVE SYSTEMS RESEARCH, 2019, 53 : 42 - 50
  • [37] Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network
    Unal, Muhammet
    Onat, Mustafa
    Demetgul, Mustafa
    Kucuk, Haluk
    MEASUREMENT, 2014, 58 : 187 - 196
  • [38] A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset
    Tang, Hongtao
    Gao, Shengbo
    Wang, Lei
    Li, Xixing
    Li, Bing
    Pang, Shibao
    SENSORS, 2021, 21 (20)
  • [39] An adaptive deep convolutional neural network for rolling bearing fault diagnosis
    Wang Fuan
    Jiang Hongkai
    Shao Haidong
    Duan Wenjing
    Wu Shuaipeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)
  • [40] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713