Quantum tunneling effect on switching rates of bistable driven system

被引:3
作者
Maslova, N. S. [1 ,2 ]
Anikin, E., V [3 ]
Mantsevich, V. N. [2 ,4 ]
Gippius, N. A. [3 ]
Sokolov, I. M. [5 ]
机构
[1] Lomonosov Moscow State Univ, Dept Phys, Chair Quantum Elect, Moscow 119991, Russia
[2] Lomonosov Moscow State Univ, Quantum Technol Ctr, Dept Phys, Moscow 119991, Russia
[3] Skoltech Inst Sci & Technol, Moscow 143026, Russia
[4] Lomonosov Moscow State Univ, Dept Phys, Chair Semicond & Cryoelect, Moscow 119991, Russia
[5] Humboldt Univ, Inst Phys & IRIS Adlesdorf, Newtonstr 15, D-12489 Berlin, Germany
关键词
quantum tunneling; bistability; switching rates; quantum optics; quantum information; OPTICAL BISTABILITY;
D O I
10.1088/1612-202X/ab0a59
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The influence of quantum tunneling effects on the bistability of nonlinear resonantly driven oscillators in the presence of external noise is analyzed by means of the generalized Fokker-Planck equation in quasi-energy space. Two time scales responsible for different stages of bistable system relaxation have been revealed. It was found that quantum tunneling effects could strongly change the switching rates between different stable states and considerably enhance occupation of the stable state with higher amplitude. It was also revealed that tunneling between nearly degenerate quasi-energy states and resonant multi-photon transitions between the genuine eigenstates of the nonlinear oscillator are just similar effects.
引用
收藏
页数:7
相关论文
共 10 条
[1]   Microcavity controlled coupling of excitonic qubits [J].
Albert, F. ;
Sivalertporn, K. ;
Kasprzak, J. ;
Strauss, M. ;
Schneider, C. ;
Hofling, S. ;
Kamp, M. ;
Forchel, A. ;
Reitzenstein, S. ;
Muljarov, E. A. ;
Langbein, W. .
NATURE COMMUNICATIONS, 2013, 4
[2]  
Dmitriev A. P., 1986, Soviet Physics - JETP, V63, P838
[3]   QUANTUM-THEORY OF OPTICAL BISTABILITY .1. NON-LINEAR POLARIZABILITY MODEL [J].
DRUMMOND, PD ;
WALLS, DF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (02) :725-741
[4]   Coherence dynamics and quantum-to-classical crossover in an exciton-cavity system in the quantum strong coupling regime [J].
Kasprzak, J. ;
Sivalertporn, K. ;
Albert, F. ;
Schneider, C. ;
Hoefling, S. ;
Kamp, M. ;
Forchel, A. ;
Reitzenstein, S. ;
Muljarov, E. A. ;
Langbein, W. .
NEW JOURNAL OF PHYSICS, 2013, 15
[5]  
Kasprzak J, 2010, NAT MATER, V9, P304, DOI [10.1038/NMAT2717, 10.1038/nmat2717]
[6]  
KELDYSH LV, 1965, SOV PHYS JETP-USSR, V20, P1307
[7]  
Maslova N. S., 1986, Soviet Physics - JETP, V64, P537
[8]   Role of fluctuations in nonlinear dynamics of a driven polariton system in semiconductor microcavities [J].
Maslova, N. S. ;
Johne, R. ;
Gippius, N. A. .
JETP LETTERS, 2007, 86 (02) :126-131
[9]   DISPERSIVE OPTICAL BISTABILITY FOR LARGE PHOTON NUMBERS AND LOW CAVITY DAMPING [J].
VOGEL, K ;
RISKEN, H .
PHYSICAL REVIEW A, 1990, 42 (01) :627-638
[10]   QUANTUM-TUNNELING RATES AND STATIONARY SOLUTIONS IN DISPERSIVE OPTICAL BISTABILITY [J].
VOGEL, K ;
RISKEN, H .
PHYSICAL REVIEW A, 1988, 38 (05) :2409-2422