The maximum number of minimal codewords in an [n, k]-code

被引:7
作者
Alahmadi, A. [1 ]
Aldred, R. E. L. [2 ]
de la Cruz, R. [3 ,4 ]
Sole, P. [1 ,5 ]
Thomassen, C. [1 ,6 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
[3] Nanyang Technol Univ, SPMS, Div Math Sci, Singapore 639798, Singapore
[4] Univ Philippines Diliman, Inst Math, Quezon City, Philippines
[5] Telecom ParisTech, F-75634 Paris 13, France
[6] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
关键词
Minimal codewords; Intersecting codes; Matroid theory; Cycle code of graphs;
D O I
10.1016/j.disc.2013.03.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We survey some upper and lower bounds on the function in the title, and make them explicit for n <= 15 and 1 <= k <= 15. Exact values are given for cycle codes of graphs for 3 <= n <= 15 and 1 <= k <= 13. (c) 2013 Published by Elsevier B.V.
引用
收藏
页码:1569 / 1574
页数:6
相关论文
共 15 条
  • [1] Voronoi regions for binary linear block codes
    Agrell, E
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (01) : 310 - 316
  • [2] On the Voronoi neighbor ratio for binary linear block codes
    Agrell, E
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (07) : 3064 - 3072
  • [3] The maximum number of minimal codewords in long codes
    Alahmadi, A.
    Aldred, R. E. L.
    dela Cruz, R.
    Sole, P.
    Thomassen, C.
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (03) : 424 - 429
  • [4] On the maximum number of cycles in a planar graph
    Aldred, R. E. L.
    Thomassen, Carsten
    [J]. JOURNAL OF GRAPH THEORY, 2008, 57 (03) : 255 - 264
  • [5] [Anonymous], 1981, Ars Combinatoria
  • [6] Ashikhmin A, 1995, LECT NOTES COMPUT SC, V948, P96
  • [7] Minimal vectors in linear codes
    Ashikhmin, A
    Barg, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) : 2010 - 2017
  • [8] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [9] LINEAR INTERSECTING CODES
    COHEN, G
    LEMPEL, A
    [J]. DISCRETE MATHEMATICS, 1985, 56 (01) : 35 - 43
  • [10] INTERSECTING CODES AND INDEPENDENT FAMILIES
    COHEN, GD
    ZEMOR, G
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (06) : 1872 - 1881