Tuning and plateaux for the entropy of α-continued fractions

被引:18
作者
Carminati, Carlo [1 ]
Tiozzo, Giulio [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
10.1088/0951-7715/26/4/1049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The entropy h(T-alpha) of alpha-continued fraction transformations is known to be locally monotone outside a closed, totally disconnected set epsilon. We will exploit the explicit description of the fractal structure of epsilon to investigate the selfsimilarities displayed by the graph of the function alpha bar right arrow h(T-alpha). Finally, we completely characterize the plateaux occurring in this graph, and classify the local monotonic behaviour.
引用
收藏
页码:1049 / 1070
页数:22
相关论文
共 21 条
[1]   DYNAMICS OF CONTINUED FRACTIONS AND KNEADING SEQUENCES OF UNIMODAL MAPS [J].
Bonanno, Claudio ;
Carminati, Carlo ;
Isola, Stefano ;
Tiozzo, Giulio .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) :1313-1332
[2]   Dynamical analysis of α-Euclidean algorithms [J].
Bourdon, J ;
Daireaux, B ;
Vallée, B .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2002, 44 (01) :246-285
[3]  
Carminati C, 2011, ARXIV11090516MATHDS
[4]   A canonical thickening of Q and the entropy of α-continued fraction transformations [J].
Carminati, Carlo ;
Tiozzo, Giulio .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 :1249-1269
[5]   The entropy of α-continued fractions: numerical results [J].
Carminati, Carlo ;
Marmi, Stefano ;
Profeti, Alessandro ;
Tiozzo, Giulio .
NONLINEARITY, 2010, 23 (10) :2429-2456
[6]  
Cassa A, 1995, THESIS U FLORENCE
[7]  
DOUADY A, 1985, ANN SCI ECOLE NORM S, V18, P287
[8]  
DOUADY A, 1995, NATO ADV SCI INST SE, V464, P65
[9]  
Falconer KJ, 1999, Fractal geometry: mathematical foundations and applications
[10]   A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets [J].
Hensley, D .
JOURNAL OF NUMBER THEORY, 1996, 58 (01) :9-45