A Posteriori Error Estimates for Parabolic Variational Inequalities
被引:14
作者:
Achdou, Yves
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Diderot, UFR Math, F-75251 Paris 05, France
Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris, FranceUniv Paris Diderot, UFR Math, F-75251 Paris 05, France
Achdou, Yves
[1
,2
]
Hecht, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris, FranceUniv Paris Diderot, UFR Math, F-75251 Paris 05, France
Hecht, Frederic
[2
]
Pommier, David
论文数: 0引用数: 0
h-index: 0
机构:
INRIA Rocquencourt, Projet MATHFI, F-78153 Le Chesnay, FranceUniv Paris Diderot, UFR Math, F-75251 Paris 05, France
Pommier, David
[3
]
机构:
[1] Univ Paris Diderot, UFR Math, F-75251 Paris 05, France
[2] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris, France
[3] INRIA Rocquencourt, Projet MATHFI, F-78153 Le Chesnay, France
Parabolic obstacle problems;
Finite element methods;
A posteriori error estimates;
Adaptive mesh refinement;
D O I:
10.1007/s10915-008-9215-7
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study a posteriori error estimates in the energy norm for some parabolic obstacle problems discretized with a Euler implicit time scheme combined with a finite element spatial approximation. We discuss the reliability and efficiency of the error indicators, as well as their localization properties. Apart from the obstacle resolution, the error indicators vanish in the so-called full contact set. The case when the obstacle is piecewise affine is studied before the general case. Numerical examples are given.
引用
收藏
页码:336 / 366
页数:31
相关论文
共 16 条
[11]
Johnson C., 1992, MATH MOD METH APPL S, V2, P483, DOI DOI 10.1142/S0218202592000284