A probabilistic model on crack initiation modes of metallic materials in very high cycle fatigue

被引:5
|
作者
Nakagawa, Akiyoshi [1 ]
Sakai, Tatsuo [2 ]
Harlow, D. Gary [3 ]
Oguma, Noriyasu [4 ]
Nakamura, Yuki [5 ]
Ueno, Akira [6 ]
Kikuchi, Shoichi [7 ]
Sakaida, Akiyoshi [8 ]
机构
[1] Hitachi Ltd, Ind Prod Co, Kita Ku, 3-18 Nakanoshima 2 Chome, Osaka 5300005, Japan
[2] Ritsumeikan Univ, Res Org Sci & Engn, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[3] Lehigh Univ, Dept Mech Engn & Mech, 19 Mem Dr West, Bethlehem, PA 18015 USA
[4] Toyama Univ, Fac Engn, 3190 Gofuku, Toyama 9308555, Japan
[5] Toyota Coll, Natl Inst Technol, 2-1 Eisei Cho, Toyota, Aichi 4718525, Japan
[6] Ritsumeikan Univ, Coll Sci & Engn, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[7] Kobe Univ, Fac Engn, Nada Ku, 1-1 Rokko Dai, Kobe, Hyogo 6578501, Japan
[8] Akashi Coll, Natl Inst Technol, Akashi, Hyogo 6748501, Japan
来源
21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21) | 2016年 / 2卷
关键词
Probabilistic model; duplex S-N curves; very high cycle fatigue; metallic materials; crack initiation modes; inclusion; BEARING STEEL; MECHANISM;
D O I
10.1016/j.prostr.2016.06.153
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the very high cycle regime, the duplex S-N property consisting of S-N curve for surface-initiated fracture and that for interior-initiated fracture was often reported for high strength steels. However, recent studies show us the fact that the surface initiated fracture can be sometimes observed even at low stress levels in the very high cycle regime. In the case of interior fracture mode, a non-metallic inclusion is usually found at the center of the fish-eye. If we suppose that such inclusions are distributed at random inside the material space, a certain number of inclusions would be located within the thin surface layer of the specimen. In such cases, the fatigue crack can take place within the surface layer giving the surface-initiated fracture even in the very high cycle regime. In the present work, the authors have attempted to construct a probabilistic model on the overall feature of these crack initiation modes in the very high cycle regime under the loading type of rotating bending. Thus, based on the distribution property of the inclusions inside the material, the appearing probability of the surface-initiated fracture and the distribution characteristics of the fatigue strength at N=10(9) cycles were well explained by the present model. Copyright (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1199 / 1206
页数:8
相关论文
共 50 条
  • [31] Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels
    Gao, Guhui
    Liu, Rong
    Fan, Yusong
    Qian, Guian
    Gui, Xiaolu
    Misra, R. D. K.
    Bai, Bingzhe
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 108 : 142 - 157
  • [32] The behavior of crack initiation and early growth in high-cycle and very-high-cycle fatigue regimes for a titanium alloy
    Pan, Xiangnan
    Su, Hang
    Sun, Chengqi
    Hong, Youshi
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 115 : 67 - 78
  • [33] Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels
    Hong, Youshi
    Lei, Zhengqiang
    Sun, Chengqi
    Zhao, Aiguo
    INTERNATIONAL JOURNAL OF FATIGUE, 2014, 58 : 144 - 151
  • [34] Nanograin layer formation at crack initiation region for very-high-cycle fatigue of a Ti-6Al-4V alloy
    Su, H.
    Liu, X.
    Sun, C.
    Hong, Y.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2017, 40 (06) : 979 - 993
  • [35] Crack initiation sensitivity of wrought direct aged alloy 718 in the very high cycle fatigue regime: the role of non-metallic inclusions
    Texier, Damien
    Cormier, Jonathan
    Villechaise, Patrick
    Stinville, Jean-Charles
    Torbet, Chris J.
    Pierret, Stephane
    Pollock, Tresa M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 678 : 122 - 136
  • [36] Investigations on the fatigue crack propagation threshold in Very High Cycle Fatigue
    Wang, Chong
    Wagner, Daniele
    Bathias, Claude
    11TH INTERNATIONAL FATIGUE CONGRESS, PTS 1 AND 2, 2014, 891-892 : 357 - 362
  • [37] Effect of microstructure inhomogeneity and crack initiation environment on the very high cycle fatigue behavior of a magnesium alloy
    Chen, Yao
    He, Chao
    Liu, Fulin
    Wang, Chong
    Xie, Qing
    Wang, Qingyuan
    Liu, Yongjie
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 131
  • [38] Investigation of crack initiation mechanisms responsible for the fish eye formation in the Very High Cycle Fatigue regime
    Wang, Chong
    Petit, Johann
    Huang, Zhiyong
    Wagner, Daniele
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 119 (320-329) : 320 - 329
  • [39] FURTHER EXPLORATION ON CHARACTERISTIC REGION OF CRACK INITIATION FOR VERY-HIGH-CYCLE FATIGUE
    Hong Y.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (08): : 2101 - 2118
  • [40] A Comprehensive Study of Fatigue Crack Initiation and Growth under Very High Cycle Torsional Fatigue Loading
    Nikitin, I. S.
    Nikitin, A. D.
    Stratula, B. A.
    PHYSICAL MESOMECHANICS, 2023, 26 (05) : 523 - 532