A probabilistic model on crack initiation modes of metallic materials in very high cycle fatigue

被引:5
|
作者
Nakagawa, Akiyoshi [1 ]
Sakai, Tatsuo [2 ]
Harlow, D. Gary [3 ]
Oguma, Noriyasu [4 ]
Nakamura, Yuki [5 ]
Ueno, Akira [6 ]
Kikuchi, Shoichi [7 ]
Sakaida, Akiyoshi [8 ]
机构
[1] Hitachi Ltd, Ind Prod Co, Kita Ku, 3-18 Nakanoshima 2 Chome, Osaka 5300005, Japan
[2] Ritsumeikan Univ, Res Org Sci & Engn, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[3] Lehigh Univ, Dept Mech Engn & Mech, 19 Mem Dr West, Bethlehem, PA 18015 USA
[4] Toyama Univ, Fac Engn, 3190 Gofuku, Toyama 9308555, Japan
[5] Toyota Coll, Natl Inst Technol, 2-1 Eisei Cho, Toyota, Aichi 4718525, Japan
[6] Ritsumeikan Univ, Coll Sci & Engn, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[7] Kobe Univ, Fac Engn, Nada Ku, 1-1 Rokko Dai, Kobe, Hyogo 6578501, Japan
[8] Akashi Coll, Natl Inst Technol, Akashi, Hyogo 6748501, Japan
来源
21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21) | 2016年 / 2卷
关键词
Probabilistic model; duplex S-N curves; very high cycle fatigue; metallic materials; crack initiation modes; inclusion; BEARING STEEL; MECHANISM;
D O I
10.1016/j.prostr.2016.06.153
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the very high cycle regime, the duplex S-N property consisting of S-N curve for surface-initiated fracture and that for interior-initiated fracture was often reported for high strength steels. However, recent studies show us the fact that the surface initiated fracture can be sometimes observed even at low stress levels in the very high cycle regime. In the case of interior fracture mode, a non-metallic inclusion is usually found at the center of the fish-eye. If we suppose that such inclusions are distributed at random inside the material space, a certain number of inclusions would be located within the thin surface layer of the specimen. In such cases, the fatigue crack can take place within the surface layer giving the surface-initiated fracture even in the very high cycle regime. In the present work, the authors have attempted to construct a probabilistic model on the overall feature of these crack initiation modes in the very high cycle regime under the loading type of rotating bending. Thus, based on the distribution property of the inclusions inside the material, the appearing probability of the surface-initiated fracture and the distribution characteristics of the fatigue strength at N=10(9) cycles were well explained by the present model. Copyright (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1199 / 1206
页数:8
相关论文
共 50 条
  • [21] Effects of specimen size on fatigue life of metallic materials in high-cycle and very-high-cycle fatigue regimes
    Sun, C.
    Zhang, X.
    Liu, X.
    Hong, Y.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2016, 39 (06) : 770 - 779
  • [22] Very high cycle fatigue crack initiation mechanisms in different engineering alloys
    Tofique, Muhammad Waqas
    Bergstrom, Jens
    Burman, Christer
    21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21), 2016, 2 : 1181 - 1190
  • [23] Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime
    Chao Gu
    Yan-ping Bao
    Peng Gan
    Min Wang
    Jin-shan He
    International Journal of Minerals Metallurgy and Materials, 2018, 25 (06) : 623 - 629
  • [24] Crack Initiation in Bulk Matrix of Austenitic Stainless Steel during Very High Cycle Fatigue
    Chai, Guocai
    Bergstrom, Jens
    Burman, Christer
    MATERIALS PERFORMANCE AND CHARACTERIZATION, 2023, 12 (02) : 93 - 106
  • [25] Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime
    Chao Gu
    Yan-ping Bao
    Peng Gan
    Min Wang
    Jin-shan He
    International Journal of Minerals, Metallurgy, and Materials, 2018, 25 : 623 - 629
  • [26] Non-inclusion induced crack initiation in multiphase high-strength steel during very high cycle fatigue
    Zhao, P.
    Liu, Z.
    Misra, R. D. K.
    Du, F.
    Zhang, C.
    Yang, Z. G.
    Yan, E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 712 : 406 - 413
  • [27] Crack growth rates and microstructure feature of initiation region for very-high-cycle fatigue of a high-strength steel
    Hu, Yuanpei
    Sun, Chengqi
    Hong, Youshi
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2018, 41 (08) : 1717 - 1732
  • [28] Damage behavior of metallic materials under very high cycle fatigue
    Chai, Guocai
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS VI, 2007, 348-349 : 237 - 240
  • [29] Review on Surface Failure Mode of Metallic Materials in Very High Cycle Fatigue Regime
    Wang, Dongming
    Li, Wei
    Wang, Ping
    Chu, Weixian
    ADVANCES IN MATERIALS AND MATERIALS PROCESSING, PTS 1-3, 2013, 652-654 : 1295 - +
  • [30] A simulation on microstructure sensitivity to very-high-cycle fatigue behavior of metallic materials
    Lei, Zhengqiang
    Xie, Jijia
    Zhao, Aiguo
    Hong, Youshi
    ISAB-2010 - FIRST INTERNATIONAL SYMPOSIUM ON ARCHIMEDES BRIDGE, 2010, 4 : 225 - 232