A three-dimensional principal component analysis approach for exploratory analysis of hyperspectral data: identification of ovarian cancer samples based on Raman microspectroscopy imaging of blood plasma

被引:25
作者
Morais, Camilo L. M. [1 ]
Martin-Hirsch, Pierre L. [2 ]
Martin, Francis L. [1 ]
机构
[1] Univ Cent Lancashire, Sch Pharm & Biomed Sci, Preston PR1 2HE, Lancs, England
[2] Lancashire Teaching Hosp NHS Fdn Trust, Dept Obstet & Gynaecol, Preston PR2 9HT, Lancs, England
关键词
SPECTROSCOPY; FOOD; CLASSIFICATION; CHEMOMETRICS; QUALITY;
D O I
10.1039/c8an02031k
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Hyperspectral imaging is a powerful tool to obtain both chemical and spatial information of biological systems. However, few algorithms are capable of working with full three-dimensional images, in which reshaping or averaging procedures are often performed to reduce the data complexity. Herein, we propose a new algorithm of three-dimensional principal component analysis (3D-PCA) for exploratory analysis of complete 3D spectrochemical images obtained through Raman microspectroscopy. Blood plasma samples of ten patients (5 healthy controls, 5 diagnosed with ovarian cancer) were analysed by acquiring hyperspectral imaging in the fingerprint region (similar to 780-1858 cm(-1)). Results show that 3D-PCA can clearly differentiate both groups based on its scores plot, where higher loadings coefficients were observed in amino acids, lipids and DNA regions. 3D-PCA is a new methodology for exploratory analysis of hyperspectral imaging, providing fast information for class differentiation.
引用
收藏
页码:2312 / 2319
页数:8
相关论文
共 33 条
  • [1] Raman Imaging in Biochemical and Biomedical Applications. Diagnosis and Treatment of Breast Cancer
    Abramczyk, Halina
    Brozek-Pluska, Beata
    [J]. CHEMICAL REVIEWS, 2013, 113 (08) : 5766 - 5781
  • [2] NUCLEAR-MAGNETIC-RESONANCE IMAGING OF A SINGLE CELL
    AGUAYO, JB
    BLACKBAND, SJ
    SCHOENIGER, J
    MATTINGLY, MA
    HINTERMANN, M
    [J]. NATURE, 1986, 322 (6075) : 190 - 191
  • [3] Hyperspectral image analysis. A tutorial
    Amigo, Jose Manuel
    Babamoradi, Hamid
    Elcoroaristizabal, Saioa
    [J]. ANALYTICA CHIMICA ACTA, 2015, 896 : 34 - 51
  • [4] Amigo JM, 2013, DATA HANDL SCI TECHN, V28, P343, DOI 10.1016/B978-0-444-59528-7.00009-0
  • [5] Principal component analysis
    Bro, Rasmus
    Smilde, Age K.
    [J]. ANALYTICAL METHODS, 2014, 6 (09) : 2812 - 2831
  • [6] Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights
    Buchberger, Amanda Rae
    DeLaney, Kellen
    Johnson, Jillian
    Li, Lingjun
    [J]. ANALYTICAL CHEMISTRY, 2018, 90 (01) : 240 - 265
  • [7] Using Raman spectroscopy to characterize biological materials
    Butler, Holly J.
    Ashton, Lorna
    Bird, Benjamin
    Cinque, Gianfelice
    Curtis, Kelly
    Dorney, Jennifer
    Esmonde-White, Karen
    Fullwood, Nigel J.
    Gardner, Benjamin
    Martin-Hirsch, Pierre L.
    Walsh, Michael J.
    McAinsh, Martin R.
    Stone, Nicholas
    Martin, Francis L.
    [J]. NATURE PROTOCOLS, 2016, 11 (04) : 664 - 687
  • [8] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
  • [9] Two-dimensional linear discriminant analysis for classification of three-way chemical data
    da Silva, Adenilton C.
    Soares, Sofacles F. C.
    Insausti, Matias
    Galvao, Roberto K. H.
    Band, Beatriz S. F.
    de Araujo, Mario Cesar U.
    [J]. ANALYTICA CHIMICA ACTA, 2016, 938 : 53 - 62
  • [10] Molecular pathology via IR and Raman spectral imaging
    Diem, Max
    Mazur, Antonella
    Lenau, Kathleen
    Schubert, Jen
    Bird, Ben
    Miljkovic, Milos
    Krafft, Christoph
    Popp, Juergen
    [J]. JOURNAL OF BIOPHOTONICS, 2013, 6 (11-12) : 855 - 886