3D Human Body Inpainting using Intrinsic Statistical Shape Models

被引:0
|
作者
Korban, Matthew [1 ]
Li, Xin [1 ]
Miao, Kehua [2 ]
Zhu, Yimin [3 ]
机构
[1] Louisiana State Univ, Div Comp Engn, Baton Rouge, LA 70803 USA
[2] Xiamen Univ, Dept Automat, Xiamen, Peoples R China
[3] Louisiana State Univ, Dept Construct Management, Baton Rouge, LA 70803 USA
来源
14TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND EDUCATION (ICCSE 2019) | 2019年
关键词
Statistical Shape Model; Human Body Inpainting; Laplacian Coordinates;
D O I
10.1109/iccse.2019.8845520
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents an algorithm for inpainting 3D human body geometry. We built a Statistical Shape Model (SSM) based on the intrinsic Laplacian Coordinates (LC) to tackle the pose variation of human bodies, which is a common challenging issue in 3D human body modeling and shape analysis. We evaluate our inpainting algorithm using synthesized damages on complete human body scans, and with the groundtruth we measure the normalized reconstruction error quantitatively. Our experiments demonstrate the effectiveness of this LC-based SSM in human body inpainting.
引用
收藏
页码:1105 / 1110
页数:6
相关论文
共 50 条
  • [31] 3D shape measurement techniques for human body reconstruction
    Xhimitiku, Iva
    Pascoletti, Giulia
    Zanetti, Elisabetta M.
    Rossi, Gianluca
    ACTA IMEKO, 2022, 11 (02): : 1 - 8
  • [32] 3D Shape Retrieval from a Photo Using Intrinsic Image
    Tashiro, Shoki
    Aono, Masaki
    2015 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2015, : 476 - 479
  • [33] Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes
    Navarro-Jimenez, Jose M.
    Aguado, Jose, V
    Bazin, Gregoire
    Albero, Vicente
    Borzacchiello, Domenico
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (05) : 2345 - 2358
  • [34] Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes
    José M. Navarro-Jiménez
    José V. Aguado
    Grégoire Bazin
    Vicente Albero
    Domenico Borzacchiello
    Journal of Intelligent Manufacturing, 2023, 34 : 2345 - 2358
  • [35] VALIDATION OF A 3D THIGH MUSCLE AND ADIPOSE TISSUE SEGMENTATION METHOD USING STATISTICAL SHAPE MODELS
    Kemnitz, J.
    Eckstein, F.
    Culvenor, A. G.
    Ruhdorfer, A.
    Dannhauer, T.
    Ring-Dimitriou, S.
    Saenger, A. M.
    Wirth, W.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 : S457 - S458
  • [36] Using image segmentation for evaluating 3D statistical shape models built with groupwise correspondence optimization
    Gollmer, Sebastian T.
    Kirschner, Matthias
    Buzug, Thorsten M.
    Wesarg, Stefan
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 125 : 283 - 303
  • [37] Moving Statistical Body Shape Models Using Blender
    Scataglini, Sofia
    Danckaers, Femke
    Haelterman, Robby
    Huysmans, Toon
    Sijbers, Jan
    PROCEEDINGS OF THE 20TH CONGRESS OF THE INTERNATIONAL ERGONOMICS ASSOCIATION (IEA 2018), VOL V: HUMAN SIMULATION AND VIRTUAL ENVIRONMENTS, WORK WITH COMPUTING SYSTEMS (WWCS), PROCESS CONTROL, 2019, 822 : 28 - 38
  • [38] Lossy Compression of 3D Statistical Shape and Intensity Models of Femoral Bones Using JPEG 2000
    Klima, Ondrej
    Barina, David
    Kleparnik, Petr
    Zemcik, Pavel
    Chromy, Adam
    Spanel, Michal
    IFAC PAPERSONLINE, 2016, 49 (25): : 115 - 120
  • [39] Patella sex determination by 3D statistical shape models and nonlinear classifiers
    Mahfouz, Mohamed
    Badawi, Ahmed
    Merkl, Brandon
    Fatah, Emam E. Abdel
    Pritchard, Emily
    Kesler, Katherine
    Moore, Megan
    Jantz, Richard
    Jantz, Lee
    FORENSIC SCIENCE INTERNATIONAL, 2007, 173 (2-3) : 161 - 170
  • [40] Deep Implicit Statistical Shape Models for 3D Medical Image Delineation
    Raju, Ashwin
    Miao, Shun
    Jin, Dakai
    Lu, Le
    Huang, Junzhou
    Harrison, Adam P.
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2135 - 2143