Zone diagrams in Euclidean spaces and in other normed spaces

被引:3
|
作者
Kawamura, Akitoshi [2 ]
Matousek, Jiri [1 ,3 ]
Tokuyama, Takeshi [4 ]
机构
[1] Charles Univ Prague, Dept Appl Math, Inst Theoret Comp Sci ITI, CR-11800 Prague 1, Czech Republic
[2] Univ Tokyo, Dept Comp Sci, Bunkyo Ku, Tokyo 1138656, Japan
[3] Swiss Fed Inst Technol, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
[4] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
Euclidean Space; Unit Ball; Normed Space; Triangle Inequality; Voronoi Diagram;
D O I
10.1007/s00208-011-0761-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Zone diagrams are a variation on the classical concept of Voronoi diagrams. Given n sites in a metric space that compete for territory, the zone diagram is an equilibrium state in the competition. Formally it is defined as a fixed point of a certain "dominance" map. Asano, Matouek, and Tokuyama proved the existence and uniqueness of a zone diagram for point sites in the Euclidean plane, and Reem and Reich showed existence for two arbitrary sites in an arbitrary metric space. We establish existence and uniqueness for n disjoint compact sites in a Euclidean space of arbitrary (finite) dimension, and more generally, in a finite-dimensional normed space with a smooth and rotund norm. The proof is considerably simpler than that of Asano et al. We also provide an example of non-uniqueness for a norm that is rotund but not smooth. Finally, we prove existence and uniqueness for two point sites in the plane with a smooth (but not necessarily rotund) norm.
引用
收藏
页码:1201 / 1221
页数:21
相关论文
共 50 条
  • [21] On curvature of surfaces immersed in normed spaces
    Balestro, Vitor
    Martini, Horst
    Teixeira, Ralph
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (02): : 291 - 309
  • [22] VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES
    Okelo, N. B.
    Agure, J. O.
    Oleche, P. O.
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (05) : 1387 - 1397
  • [23] On curvature of surfaces immersed in normed spaces
    Vitor Balestro
    Horst Martini
    Ralph Teixeira
    Monatshefte für Mathematik, 2020, 192 : 291 - 309
  • [24] VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES
    N.B.OKELO
    J.O.AGURE
    P.O.OLECHE
    ActaMathematicaScientia, 2013, 33 (05) : 1387 - 1397
  • [25] Nucleation in multidimensional Euclidean spaces
    P. P. Fedorov
    G. A. Denisenko
    R. M. Zakalyukin
    Crystallography Reports, 2005, 50 : 150 - 153
  • [26] ON SOME INEQUALITIES IN NORMED LINEAR SPACES
    Dragomir, S. S.
    TAMKANG JOURNAL OF MATHEMATICS, 2009, 40 (03): : 225 - 237
  • [27] A generalization of metric, normed, and unitary spaces
    A. A. Borubaev
    Doklady Mathematics, 2014, 89 : 154 - 156
  • [28] Normed Spaces Which Are Not Mackey Groups
    Gabriyelyan, Saak
    AXIOMS, 2021, 10 (03)
  • [29] Cone normed spaces and weighted means
    Sonmez, Ayse
    Cakalli, Huseyin
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1660 - 1666
  • [30] Paracomplete normed spaces and Fredholm theory
    Alvarez T.
    González M.
    Rendiconti del Circolo Matematico di Palermo, 1999, 48 (2) : 257 - 264