Adaptive hp-Finite Element Computations for Time-Harmonic Maxwell's Equations

被引:11
作者
Jiang, Xue [1 ]
Zhang, Linbo [1 ]
Zheng, Weiying [1 ]
机构
[1] Chinese Acad Sci, LSEC, Inst Computat Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
hp-adaptive finite element method; Maxwell's equations; eddy current problem; a posteriori error estimate; P-VERSION; REFINEMENT; MODEL; ALGORITHM;
D O I
10.4208/cicp.231111.090312a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, hp-adaptive finite element methods are studied for time-harmonic Maxwell's equations. We propose the parallel hp-adaptive algorithms on conforming unstructured tetrahedral meshes based on residual-based a posteriori error estimates. Extensive numerical experiments are reported to investigate the efficiency of the hp-adaptive methods for point singularities, edge singularities, and an engineering benchmark problem of Maxwell's equations. The hp-adaptive methods show much better performance than the h-adaptive method.
引用
收藏
页码:559 / 582
页数:24
相关论文
共 41 条
[31]  
Mitchell W.F., 2011, RECENT ADV COMPUTATI
[32]   OPTIMAL MULTILEVEL ITERATIVE METHODS FOR ADAPTIVE GRIDS [J].
MITCHELL, WF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (01) :146-167
[33]  
Monk P., 2003, FINITE ELEMENT METHO
[34]  
Morin P., 2002, SIAM Review, V44, P631
[35]   Two-dimensional high-accuracy simulation of resistivity logging-while-drilling (LWD) measurements using a self-adaptive goal-oriented hp finite element method [J].
Pardo, D. ;
Demkowicz, L. ;
Torres-Verdin, C. ;
Paszynski, M. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (06) :2085-2106
[36]  
Pardo D., 2007, ELECTRODYNAMICS CO 2, V196, P37
[37]  
Schmidt A., 2005, LECT NOTES COMPUTATI, V42
[38]  
Schöberl J, 2008, MATH COMPUT, V77, P633, DOI 10.1090/S0025-5718-07-02030-3
[39]  
Verf?rth R., 1996, REV POSTERIORI ERROR
[40]  
Zhang LB, 2009, NUMER MATH-THEORY ME, V2, P65