High Rate Capability and Excellent Thermal Stability of Li+-Conductive Li2ZrO3-Coated LiNi1/3Co1/3Mn1/3O2 via a Synchronous Lithiation Strategy

被引:97
作者
Zhang, Jicheng [1 ]
Li, Zhengyao [1 ]
Gao, Rui [1 ]
Hu, Zhongbo [1 ]
Liu, Xiangfeng [1 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; POSITIVE-ELECTRODE MATERIALS; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; HIGH-CAPACITY; RICH CATHODE; STORAGE; SPINEL; CHALLENGES;
D O I
10.1021/acs.jpcc.5b06858
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel synchronous lithiation route has been successfully used to coat Lit-conductive Li2ZrO3 on the surface of LiNi1/3Co1/3Mn1/3O2 (Li2ZrO3@LNCMO). In this strategy, Li2ZrO3 layer and LiNi1/3Co1/3Mn1/3O2 host simultaneously form from ZrO2@Ni1/3Co1/3Mn1/3C2O4 center dot xH(2)O precursor. In compared to bare LNCMO, the reversible capacity, cycling performance, thermal stability, rate capability, and polarization of Li2ZrO3@LNCMO have all been greatly improved. At 0.1 and 10 C, the specific capacity of Li2ZrO3@LNCMO is 192 and 106 mAh g(-1), respectively, while they are 178 and 46 mAh g(-1) for bare LNCMO. At a current density of 55 degrees C, the capacity retention of Li2ZrO3@LNCMO at 25 and 55 C after 400 cycles is enhanced to 93.8% and 85.1%, respectively, compared to 69.2% and 37.4% of bare LNCMO. The largely enhanced electrochemical performances of Li2ZrO3@LNCMO cathode can be attributed to the high Li-ion conductivity as well as the proctection of Li2ZrO3 coating. Li+ conductivity of Li2ZrO3@LNCMO is about 20 times higher than that of bare LNCMO. Moreover, the migration of partial Zr4+ to the host LNCMO phase not only benefits Li-ion or electron conductivity but also alleviates the Li-Ni cation mixing and improves the structure stability. The cations migration, doping effect, and the reduced cation mixing further contribute to the electrochemical performance enhancement.
引用
收藏
页码:20350 / 20356
页数:7
相关论文
共 43 条
[1]   Lithium-nickel citrate precursors for the preparation of LiNiO2 insertion electrodes [J].
Alcantara, R ;
Lavela, P ;
Tirado, JL ;
Stoyanova, R ;
Kuzmanova, E ;
Zhecheva, E .
CHEMISTRY OF MATERIALS, 1997, 9 (10) :2145-2155
[2]   A Search for the Optimum Lithium Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries [J].
Ates, Mehmet Nurullah ;
Mukerjee, Sanjeev ;
Abraham, K. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) :A1236-A1245
[3]   Localization of vacancies and mobility of lithium ions in Li2ZrO3 as obtained by 6,7Li NMR [J].
Baklanova, Ya V. ;
Arapova, I. Yu ;
Buzlukov, A. L. ;
Gerashenko, A. P. ;
Verkhovskii, S. V. ;
Mikhalev, K. N. ;
Denisova, T. A. ;
Shein, I. R. ;
Maksimova, L. G. .
JOURNAL OF SOLID STATE CHEMISTRY, 2013, 208 :43-49
[4]   High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation [J].
Cheng, Cuixia ;
Tan, Long ;
Liu, Haowen ;
Huang, Xintang .
MATERIALS RESEARCH BULLETIN, 2011, 46 (11) :2032-2035
[5]   Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/3Mn1/3Co1/3O2 cathodes [J].
Choi, J ;
Manthiram, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (09) :A1714-A1718
[6]   Effects of Ti and Mg Codoping on the Electrochemical Performance of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries [J].
Deng, C. ;
Zhang, S. ;
Yang, S. Y. ;
Gao, Y. ;
Wu, B. ;
Ma, L. ;
Fu, B. L. ;
Wu, Q. ;
Liu, F. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (30) :15048-15056
[7]   Highly enhanced lithium storage capability of LiNi0.5Mn1.5O4 by coating with Li2TiO3 for Li-ion batteries [J].
Deng, Haifu ;
Nie, Ping ;
Luo, Haifeng ;
Zhang, Yi ;
Wang, Jie ;
Zhang, Xiaogang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (43) :18256-18262
[8]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   Nanostructured materials for electrochemical energy conversion and storage devices [J].
Guo, Yu-Guo ;
Hu, Jin-Song ;
Wan, Li-Jun .
ADVANCED MATERIALS, 2008, 20 (15) :2878-2887