Modeling and simulation of HTS cables for scattering parameter analysis

被引:5
作者
Bang, Su Sik [1 ]
Lee, Geon Seok [1 ]
Kwon, Gu-Young [1 ]
Lee, Yeong Ho [1 ]
Chang, Seung Jin [1 ]
Lee, Chun-Kwon [1 ]
Sohn, Songho [2 ]
Park, Kijun [2 ]
Shin, Yong-June [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03772, South Korea
[2] Korea Elect Power Corp Res Inst, Daejeon 34056, South Korea
来源
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS | 2016年 / 530卷
基金
新加坡国家研究基金会;
关键词
High temperature superconducting (HTS) cable; Modeling; Simulation; Scattering parameter (S-parameter); Network analyzer (NA);
D O I
10.1016/j.physc.2016.07.013
中图分类号
O59 [应用物理学];
学科分类号
摘要
Most of modeling and simulation of high temperature superconducting (HTS) cables are inadequate for high frequency analysis since focus of the simulation's frequency is fundamental frequency of the power grid, which does not reflect transient characteristic. However, high frequency analysis is essential process to research the HTS cables transient for protection and diagnosis of the HTS cables. Thus, this paper proposes a new approach for modeling and simulation of HTS cables to derive the scattering parameter (S-parameter), an effective high frequency analysis, for transient wave propagation characteristics in high frequency range. The parameters sweeping method is used to validate the simulation results to the measured data given by a network analyzer (NA). This paper also presents the effects of the cable-to-NA connector in order to minimize the error between the simulated and the measured data under ambient and superconductive conditions. Based on the proposed modeling and simulation technique, S-parameters of long-distance HTS cables can be accurately derived in wide range of frequency. The results of proposed modeling and simulation can yield the characteristics of the HTS cables and will contribute to analyze the HTS cables. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 146
页数:5
相关论文
共 14 条
[1]  
Ametani A., 2015, Cable System Transients: Theory, Modeling and Simulation
[2]   Modeling of Second Generation HTS Cables for Grid Fault Analysis Applied to Power System Simulation [J].
Del-Rosario-Calaf, Gerard ;
Lloberas-Valls, Joaquim ;
Sumper, Andreas ;
Granados, Xavier ;
Villafafila-Robles, Roberto .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
[3]   Wideband frequency-domain characterization of FR-4 and time-domain causality [J].
Djordjevic, AR ;
Biljic, RM ;
Biljic, RM ;
Sarkar, TK .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2001, 43 (04) :662-667
[4]   Dielectric characteristics of HTS cables based on partial discharge measurement [J].
Hayakawa, N ;
Nagino, M ;
Kojima, H ;
Goto, M ;
Takahashi, T ;
Yasuda, K ;
Okubo, H .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :1802-1805
[5]   Development of a PSCAD/EMTDC Model Component for AC Loss Characteristic Analysis of HTS Power Cable [J].
Kim, Jin Geun ;
Kim, A. -Rong ;
Kim, Daewon ;
Park, Minwon ;
Yu, In-Keun ;
Cho, Jeonwook ;
Sim, Ki-Deok ;
Kim, Seokho ;
Lee, Jun Kyoung ;
Won, Young-Jin .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2010, 20 (03) :1280-1283
[6]  
Lee G. S., 2015, P INT C INS POW CABL
[7]   Study on the Simplified Distributed Parameter Model for HTS Cables [J].
Li, Jiangtao ;
Zhao, Zhijie ;
Shu, Bin ;
Han, Xiaopeng ;
Ma, Xueliang ;
Bian, Bin ;
Liang, Zheng ;
Li, Jianhao ;
Jiang, Weihua .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (05)
[8]   Results of KEPCO HTS cable system tests and design of hybrid cryogenic system [J].
Lim, J. H. ;
Sohn, S. H. ;
Yang, H. S. ;
Hwang, S. D. ;
Kim, D. L. ;
Ryoo, H. S. ;
Choi, H. O. .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (20) :1597-1600
[9]  
Papazyan R, 2004, IEEE T DIELECT EL IN, V11, P461
[10]   High voltage testing of a 5-meter prototype triaxial HTS cable [J].
Sauers, Isidor ;
James, D. Randy ;
Ellis, Alvin R. ;
Tuncer, Enis ;
Pace, Marshall O. ;
Gouge, M. J. ;
Demko, J. A. ;
Lindsay, D. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) :1734-1737