Cascade observer design for a class of uncertain nonlinear systems with delayed outputs

被引:36
作者
Farza, Mondher [1 ,2 ]
Hernandez-Gonzalez, Omar [3 ]
Menard, Tomas [1 ,2 ]
Targui, Boubekeur [1 ,2 ]
M'Saad, Mohammed [1 ,2 ]
Astorga-Zaragoza, Carlos-Manuel [4 ]
机构
[1] Univ Caen, Team IdO, Lab Automat Caen, 6 Bd Marechal Juin, F-14050 Caen, France
[2] ENSICAEN, 6 Bd Marechal Juin, F-14050 Caen, France
[3] Inst Tecnol Super Coatzacoalcos ITESCO, Carretera Antigua Minatitlan Coatzacoalcos Km 16-, Coatzacoalcos 96536, Ver, Mexico
[4] CENIDET, Ctr Nacl Invest & Desarrollo Tecnol, Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Nonlinear systems; Delayed output; Uncertain system; Cascade observer; High gain observer; Sampling process; CHAIN OBSERVER; STATE;
D O I
10.1016/j.automatica.2017.12.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a state observer with a cascade structure for a class of nonlinear systems in the presence of uncertainties in the state equations and an arbitrarily long delay in the outputs. The design of the observer is achieved under an appropriate set of assumptions allowing to establish the ultimate boundedness of the observation error. Indeed, a suitable expression of the asymptotic observation error, involving the delay, the bound of the uncertainties and the Lipschitz constant of the system nonlinearities, is derived. Besides, it is shown that this ultimate bound is a decreasing function of the cascade length and is equal to zero in the uncertainty-free case. The observer design is first carried out in the case where the output measurements are continuously available and subsequently extended to the case where the outputs are available only at (non equally spaced) sampling instants. The performance of the proposed observer and its main properties are highlighted through illustrative simulation results involving an academic example. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 27 条
[1]  
[Anonymous], 2002, NONLINEAR SYSTEMS
[2]   Nonlinear predictors for systems with bounded trajectories and delayed measurements [J].
Battilotti, Stefano .
AUTOMATICA, 2015, 59 :127-138
[3]  
Besancon Gildas, 2007, Proceedings of the European Control Conference 2007 (ECC), P1786
[4]   Nonlinear observers comprising high-gain observers and extended Kalman filters [J].
Boker, AlMuatazbellah M. ;
Khalil, Hassan K. .
AUTOMATICA, 2013, 49 (12) :3583-3590
[5]   Observer design for a class of uncertain nonlinear systems with sampled outputs-Application to the estimation of kinetic rates in bioreactors [J].
Bouraoui, Ibtissem ;
Farza, Mondher ;
Menard, Tomas ;
Ben Abdennour, Ridha ;
M'Saad, Mohammed ;
Mosrati, Henda .
AUTOMATICA, 2015, 55 :78-87
[6]   A CHAIN OBSERVER FOR NONLINEAR SYSTEMS WITH MULTIPLE TIME-VARYING MEASUREMENT DELAYS [J].
Cacace, Filippo ;
Germani, Alfredo ;
Manes, Costanzo .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (03) :1862-1885
[7]  
Chakrabarty A., 2016, P 55 IEEE C DEC CONT
[8]   State and Unknown Input Observers for Nonlinear Systems With Bounded Exogenous Inputs [J].
Chakrabarty, Ankush ;
Corless, Martin J. ;
Buzzard, Gregery T. ;
Zak, Stanislaw H. ;
Rundell, Ann E. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (11) :5497-5510
[9]   EXPONENTIAL OBSERVERS FOR NONLINEAR-SYSTEMS [J].
DEZA, F ;
BOSSANNE, D ;
BUSVELLE, E ;
GAUTHIER, JP ;
RAKOTOPARA, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (03) :482-484
[10]   Simple Cascade Observer for a Class of Nonlinear Systems With Long Output Delays [J].
Farza, M. ;
M'Saad, M. ;
Menard, T. ;
Fall, M. L. ;
Gehan, O. ;
Pigeon, E. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (12) :3338-3343