Challenges with prediction of battery electrolyte electrochemical stability window and guiding the electrode - electrolyte stabilization

被引:104
作者
Borodin, Oleg [1 ]
机构
[1] US Army Res Lab, Sensors & Electron Devices Directorate, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
关键词
Battery; Electrolyte; Quantum chemistry; Double layer; Electrochemical stability; ETHYLENE-CARBONATE; INTERFACIAL STRUCTURE; OXIDATIVE-STABILITY; ION; DECOMPOSITION; SURFACE; REDUCTION; MECHANISM; GRAPHITE; SULFONE;
D O I
10.1016/j.coelec.2018.10.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Progress in development of novel battery chemistries critically depends on the stabilization of electrode - electrolyte interfaces. Battery electrolytes are commonly selected to either be electrochemically stable at the electrode, current collector, and conductive additive surfaces or to decompose at these interfaces electrochemically and form a kinetically protective ionically-conducting but electronically-insulating passivation film. Increasing energy density of electrical double layer (EDL) capacitors, or supercapacitors, also requires electrolytes with an extended electrochemical stability window. Quantum chemistry (QC) calculations of the representative electrolyte clusters or electrolyte components reacting with the electrode surfaces provide molecular scale understanding of the key electrolyte decomposition pathways under reductive or oxidative conditions. Moreover, QC calculations show that the electrolyte reduction and oxidation stability depends on the solvent and salt partitioning within EDL near electrolytes and the number of lithium cations complexing anions or solvents. Thus, an electrolyte electrochemical stability could be controlled by adjusting salt concentration, salt aggregation and preferential solvent or anion partitioning within EDL, opening new opportunities for enabling aggressive battery chemistries and EDL capacitors with improved energy densities.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 40 条
[1]   A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries [J].
Alvarado, Judith ;
Schroeder, Marshall A. ;
Zhang, Minghao ;
Borodin, Oleg ;
Gobrogge, Eric ;
Olguin, Marco ;
Ding, Michael S. ;
Gobet, Mallory ;
Greenbaum, Steve ;
Meng, Ying Shirley ;
Xu, Kang .
MATERIALS TODAY, 2018, 21 (04) :341-353
[2]  
Borodin O., 2014, Electrolytes for lithium and lithium-ion batteries, P371, DOI [DOI 10.1007/978-1-4939-0302-38, DOI 10.1007/978-1-4939-0302-3_8]
[3]   Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure Published as part of the Accounts of Chemical Research special issue "Energy Storage: Complexities Among Materials and Interfaces at Multiple Length Scales" [J].
Borodin, Oleg ;
Ren, Xiaoming ;
Vatamanu, Jenel ;
Cresce, Arthur von Wald ;
Knap, Jaroslaw ;
Xu, Kang .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (12) :2886-2894
[4]   Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry [J].
Borodin, Oleg ;
Olguin, Marco ;
Ganesh, P. ;
Kent, Paul R. C. ;
Allen, Joshua L. ;
Henderson, Wesley A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (01) :164-175
[5]   Towards high throughput screening of electrochemical stability of battery electrolytes [J].
Borodin, Oleg ;
Olguin, Marco ;
Spear, Carrie E. ;
Leiter, Kenneth W. ;
Knap, Jaroslaw .
NANOTECHNOLOGY, 2015, 26 (35)
[6]   Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes [J].
Borodin, Oleg ;
Behl, Wishvender ;
Jow, T. Richard .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (17) :8661-8682
[7]   Importance of Reduction and Oxidation Stability of High Voltage Electrolytes and Additives [J].
Delp, Samuel A. ;
Borodin, Oleg ;
Olguin, Marco ;
Eisner, Claire G. ;
Allen, Joshua L. ;
Jow, T. Richard .
ELECTROCHIMICA ACTA, 2016, 209 :498-510
[8]   Measurement of the electrochemical oxidation of organic electrolytes used in lithium batteries by microelectrode [J].
Egashira, M ;
Takahashi, H ;
Okada, S ;
Yamaki, J .
JOURNAL OF POWER SOURCES, 2001, 92 (1-2) :267-271
[9]   Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J].
Fan, Xiulin ;
Chen, Long ;
Borodin, Oleg ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Zheng, Jing ;
Yang, Chongyin ;
Liou, Sz-Chian ;
Amine, Khalil ;
Xu, Kang ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :715-+
[10]   Computational applications in organic electrochemistry [J].
Fry, Albert J. .
CURRENT OPINION IN ELECTROCHEMISTRY, 2017, 2 (01) :67-75