Manganese doping and optical properties of ZnS nanoribbons by postannealing

被引:57
作者
Li, YQ [1 ]
Zapien, JA
Shan, YY
Liu, YK
Lee, ST
机构
[1] City Univ Hong Kong, COSDAF, Hong Kong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1063/1.2161073
中图分类号
O59 [应用物理学];
学科分类号
摘要
Manganese (Mn) doping of ZnS nanoribbons was achieved by simple thermal annealing. Upon heating ZnS nanoribbons with MnS powder up to 700 degrees C, the intrinsic photoluminescence (PL) of the annealed nanoribbons disappeared and a new PL peak at 585 nm gradually emerged. Significantly, the annealing process induced no detectable change in the morphology and uniform hexagonal wurtzite 2H structure of the single-crystal ZnS nanoribbons. The PL peak at 585 nm is attributed to Mn dopant and confirms Mn incorporation in ZnS because (1) the peak appears only when ZnS ribbons were annealed with MnS, but does not appear without MnS, (2) its intensity increases with increasing annealing temperature, which is consistent with increased incorporation of Mn2+ ions, and (3) its position is similar to that of Mn-related emission in ZnS, and is independent of the measuring temperature and excitation power. This work demonstrates the capability of doping nanostructured materials by simple postannealing treatment. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 20 条
[1]   OPTICAL-PROPERTIES OF MANGANESE-DOPED NANOCRYSTALS OF ZNS [J].
BHARGAVA, RN ;
GALLAGHER, D ;
HONG, X ;
NURMIKKO, A .
PHYSICAL REVIEW LETTERS, 1994, 72 (03) :416-419
[2]   Crystal field, phonon coupling and emission shift of Mn2+ in ZnS:Mn nanoparticles [J].
Chen, W ;
Sammynaiken, R ;
Huang, YN ;
Malm, JO ;
Wallenberg, R ;
Bovin, JO ;
Zwiller, V ;
Kotov, NA .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (02) :1120-1129
[3]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[4]   Structure and luminescence of annealed nanoparticles of ZnS:Mn [J].
Dinsmore, AD ;
Hsu, DS ;
Qadri, SB ;
Cross, JO ;
Kennedy, TA ;
Gray, HF ;
Ratna, BR .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (09) :4985-4993
[5]   Synthesis and photoluminescence properties of ZnMnS nanobelts [J].
Geng, BY ;
Zhang, LD ;
Wang, GZ ;
Xie, T ;
Zhang, YG ;
Meng, GW .
APPLIED PHYSICS LETTERS, 2004, 84 (12) :2157-2159
[6]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[7]   Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale [J].
Jiang, Y ;
Meng, XM ;
Liu, J ;
Xie, ZY ;
Lee, CS ;
Lee, ST .
ADVANCED MATERIALS, 2003, 15 (04) :323-327
[8]   Optical characteristics of arsenic-doped ZnO nanowires [J].
Lee, W ;
Jeong, MC ;
Myoung, JM .
APPLIED PHYSICS LETTERS, 2004, 85 (25) :6167-6169
[9]   High-quality CdS nanoribbons with lasing cavity [J].
Liu, YK ;
Zapien, JA ;
Geng, CY ;
Shan, YY ;
Lee, CS ;
Lifshitz, Y ;
Lee, ST .
APPLIED PHYSICS LETTERS, 2004, 85 (15) :3241-3243
[10]   Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry [J].
Ong, HC ;
Chang, RPH .
APPLIED PHYSICS LETTERS, 2001, 79 (22) :3612-3614