A Single-Molecule Hershey-Chase Experiment

被引:55
作者
Van Valen, David [1 ]
Wu, David [1 ]
Chen, Yi-Ju [2 ]
Tuson, Hannah [3 ]
Wiggins, Paul [4 ]
Phillips, Rob [1 ]
机构
[1] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[2] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[3] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[4] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
BACTERIOPHAGE-LAMBDA; DNA EJECTION; ESCHERICHIA-COLI; PHAGE ADSORPTION; IN-VITRO; CELLS; TRANSLOCATION; DYNAMICS; KINETICS; BINDING;
D O I
10.1016/j.cub.2012.05.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ever since Hershey and Chase used phages to establish DNA as the carrier of genetic information in 1952, the precise mechanisms of phage DNA translocation have been a mystery [1]. Although bulk measurements have set a time-scale for in vivo DNA translocation during bacteriophage infection, measurements of DNA ejection by single bacteriophages have only been made in vitro. Here, we present direct visualization of single bacteriophages infecting individual Escherichia con cells. For bacteriophage lambda, we establish a mean ejection time of roughly 5 min with significant cell-to-cell variability, including pausing events. In contrast, corresponding in vitro single-molecule ejections are more uniform and finish within 10 s. Our data reveal that when plotted against the amount of DNA ejected, the velocity of ejection for two different genome lengths collapses onto a single curve. This suggests that in vivo ejections are controlled by the amount of DNA ejected. In contrast, in vitro DNA ejections are governed by the amount of DNA left inside the capsid. This analysis provides evidence against a purely intrastrand repulsion-based mechanism and suggests that cell-internal processes dominate. This provides a picture of the early stages of phage infection and sheds light on the problem of polymer translocation.
引用
收藏
页码:1339 / 1343
页数:5
相关论文
共 28 条
[1]   Imaging poliovirus entry in live cells [J].
Brandenburg, Boerries ;
Lee, Lily Y. ;
Lakadamyali, Melike ;
Rust, Michael J. ;
Zhuang, Xiaowei ;
Hogle, James M. .
PLOS BIOLOGY, 2007, 5 (07) :1543-1555
[2]   Is the In Vitro Ejection of Bacteriophage DNA Quasistatic? A Bulk to Single Virus Study [J].
Chiaruttini, N. ;
de Frutos, M. ;
Augarde, E. ;
Boulanger, P. ;
Letellier, L. ;
Viasnoff, V. .
BIOPHYSICAL JOURNAL, 2010, 99 (02) :447-455
[3]   Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Environmental Samples [J].
Colomer-Lluch, Marta ;
Jofre, Juan ;
Muniesa, Maite .
PLOS ONE, 2011, 6 (03)
[4]   Single-molecule study of transcriptional pausing and arrest by E-coli RNA polymerase [J].
Davenport, RJ ;
Wuite, GJL ;
Landick, R ;
Bustamante, C .
SCIENCE, 2000, 287 (5462) :2497-2500
[5]   Binding of intercalating and groove-binding cyanine dyes to bacteriophage T5 [J].
Eriksson, Maja ;
Hardelin, Maria ;
Larsson, Anette ;
Bergenholtz, Johan ;
Akerman, Bjorn .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (05) :1139-1148
[6]   Ionic effects on viral DNA packaging and portal motor function in bacteriophage φ29 [J].
Fuller, Derek N. ;
Rickgauer, John Peter ;
Jardine, Paul J. ;
Grimes, Shelley ;
Anderson, Dwight L. ;
Smith, Douglas E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (27) :11245-11250
[7]   RATE OF TRANSLOCATION OF BACTERIOPHAGE-T7 DNA ACROSS THE MEMBRANES OF ESCHERICHIA-COLI [J].
GARCIA, LR ;
MOLINEUX, IJ .
JOURNAL OF BACTERIOLOGY, 1995, 177 (14) :4066-4076
[8]   Bacteria-Phage Antagonistic Coevolution in Soil [J].
Gomez, Pedro ;
Buckling, Angus .
SCIENCE, 2011, 332 (6025) :106-109
[9]   Polymer translocation in crowded environments [J].
Gopinathan, Ajay ;
Kim, Yong Woon .
PHYSICAL REVIEW LETTERS, 2007, 99 (22)
[10]   The effect of genome length on ejection forces in bacteriophage lambda [J].
Grayson, P ;
Evilevitch, A ;
Inamdar, MM ;
Purohit, PK ;
Gelbart, WM ;
Knobler, CM ;
Phillips, R .
VIROLOGY, 2006, 348 (02) :430-436