High-throughput density functional perturbation theory and machine learning predictions of infrared, piezoelectric, and dielectric responses

被引:81
作者
Choudhary, Kamal [1 ]
Garrity, Kevin F. [1 ]
Sharma, Vinit [2 ,3 ]
Biacchi, Adam J. [4 ]
Walker, Angela R. Hight [4 ]
Tavazza, Francesca [1 ]
机构
[1] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
[2] Oak Ridge Natl Lab, Natl Inst Computat Sci, POB 2009, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Joint Inst Computat Sci, Knoxville, TN 37996 USA
[4] NIST, Engn Phys Div, Gaithersburg, MD 20899 USA
关键词
INTERATOMIC FORCE-CONSTANTS; TOTAL-ENERGY CALCULATIONS; BORN EFFECTIVE CHARGES; MATERIALS SCIENCE; CRYSTAL-STRUCTURES; 1ST-PRINCIPLES; DESCRIPTORS; GENERATION; DISCOVERY; LIBRARY;
D O I
10.1038/s41524-020-0337-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Many technological applications depend on the response of materials to electric fields, but available databases of such responses are limited. Here, we explore the infrared, piezoelectric, and dielectric properties of inorganic materials by combining high-throughput density functional perturbation theory and machine learning approaches. We compute Gamma-point phonons, infrared intensities, Born-effective charges, piezoelectric, and dielectric tensors for 5015 non-metallic materials in the JARVIS-DFT database. We find 3230 and 1943 materials with at least one far and mid-infrared mode, respectively. We identify 577 high-piezoelectric materials, using a threshold of 0.5 C/m(2). Using a threshold of 20, we find 593 potential high-dielectric materials. Importantly, we analyze the chemistry, symmetry, dimensionality, and geometry of the materials to find features that help explain variations in our datasets. Finally, we develop high-accuracy regression models for the highest infrared frequency and maximum Born-effective charges, and classification models for maximum piezoelectric and average dielectric tensors to accelerate discovery.
引用
收藏
页数:13
相关论文
共 91 条
[1]   GREEN-FUNCTION APPROACH TO LINEAR RESPONSE IN SOLIDS [J].
BARONI, S ;
GIANNOZZI, P ;
TESTA, A .
PHYSICAL REVIEW LETTERS, 1987, 58 (18) :1861-1864
[2]   Active learning for accelerated design of layered materials [J].
Bassman, Lindsay ;
Rajak, Pankaj ;
Kalia, Rajiv K. ;
Nakano, Aiichiro ;
Sha, Fei ;
Sun, Jifeng ;
Singh, David J. ;
Aykol, Muratahan ;
Huck, Patrick ;
Persson, Kristin ;
Vashishta, Priya .
NPJ COMPUTATIONAL MATERIALS, 2018, 4
[3]   Characterization of Few-Layer 1T′ MoTe2 by Polarization-Resolved Second Harmonic Generation and Raman Scattering [J].
Beams, Ryan ;
Cancado, Luiz Gustavo ;
Krylyuk, Sergiy ;
Kalish, Irina ;
Kalanyan, Berc ;
Singh, Arunima K. ;
Choudhary, Kamal ;
Bruma, Alina ;
Vora, Patrick M. ;
Tavazza, Francesca ;
Da-Vydov, Albert V. ;
Stranick, Stephan J. .
ACS NANO, 2016, 10 (10) :9626-9636
[4]   A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach [J].
Black, Connor ;
Haughey, Simon A. ;
Chevallier, Olivier P. ;
Galvin-King, Pamela ;
Elliott, Christopher T. .
FOOD CHEMISTRY, 2016, 210 :551-557
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling [J].
Carrete, Jesus ;
Li, Wu ;
Mingo, Natalio ;
Wang, Shidong ;
Curtarolo, Stefano .
PHYSICAL REVIEW X, 2014, 4 (01)
[7]   New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations [J].
Castelli, Ivano E. ;
Huser, Falco ;
Pandey, Mohnish ;
Li, Hong ;
Thygesen, Kristian S. ;
Seger, Brian ;
Jain, Anubhav ;
Persson, Kristin A. ;
Ceder, Gerbrand ;
Jacobsen, Karsten W. .
ADVANCED ENERGY MATERIALS, 2015, 5 (02)
[8]   Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment [J].
Chen, Wei ;
Pohls, Jan-Hendrik ;
Hautier, Geoffroy ;
Broberg, Danny ;
Bajaj, Saurabh ;
Aydemir, Umut ;
Gibbs, Zachary M. ;
Zhu, Hong ;
Asta, Mark ;
Snyder, G. Jeffrey ;
Meredig, Bryce ;
White, Mary Anne ;
Persson, Kristin ;
Jain, Anubhav .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (20) :4414-4426
[9]   Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening [J].
Cheng, Lei ;
Assary, Rajeev S. ;
Qu, Xiaohui ;
Jain, Anubhav ;
Ong, Shyue Ping ;
Rajput, Nay Nidhi ;
Persson, Kristin ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (02) :283-291
[10]  
Choudhary K., 2019, DATADRIVEN DISCOVERY