A Monte Carlo Algorithm for Immiscible Two-Phase Flow in Porous Media

被引:11
作者
Savani, Isha [1 ]
Sinha, Santanu [2 ]
Hansen, Alex [2 ]
Bedeaux, Dick [3 ]
Kjelstrup, Signe [3 ]
Vassvik, Morten [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Phys, NTNU, N-7491 Trondheim, Norway
[2] Beijing Computat Sci Res Ctr, 10 West Dongbeiwang Rd, Beijing 100193, Peoples R China
[3] Norwegian Univ Sci & Technol, Dept Chem, NTNU, N-7491 Trondheim, Norway
关键词
Dynamical pore network models; Markov Chain Monte Carlo; Metropolis Monte Carlo; Immiscible two-phase flow; Ergodicity;
D O I
10.1007/s11242-016-0804-x
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We present a Markov Chain Monte Carlo algorithm based on the Metropolis algorithm for simulation of the flow of two immiscible fluids in a porous medium under macroscopic steady-state conditions using a dynamical pore network model that tracks the motion of the fluid interfaces. The Monte Carlo algorithm is based on the configuration probability, where a configuration is defined by the positions of all fluid interfaces. We show that the configuration probability is proportional to the inverse of the flow rate. Using a two-dimensional network, advancing the interfaces using time integration, the computational time scales as the linear system size to the fourth power, whereas the Monte Carlo computational time scales as the linear size to the second power. We discuss the strengths and the weaknesses of the algorithm.
引用
收藏
页码:869 / 888
页数:20
相关论文
共 24 条
  • [1] A two-dimensional network simulator for two-phase flow in porous media
    Aker, E
    Maloy, KJ
    Hansen, A
    Batrouni, GG
    [J]. TRANSPORT IN POROUS MEDIA, 1998, 32 (02) : 163 - 186
  • [2] [Anonymous], 2007, Numerical Recipes: The Art of Scientific Computing
  • [3] Modeling of Pore-Scale Two-Phase Phenomena Using Density Functional Hydrodynamics
    Armstrong, R. T.
    Berg, S.
    Dinariev, O.
    Evseev, N.
    Klemin, D.
    Koroteev, D.
    Safonov, S.
    [J]. TRANSPORT IN POROUS MEDIA, 2016, 112 (03) : 577 - 607
  • [4] BATROUNI GG, 1988, J STAT PHYS, V52, P747, DOI 10.1007/BF01019728
  • [5] Pore-scale imaging and modelling
    Blunt, Martin J.
    Bijeljic, Branko
    Dong, Hu
    Gharbi, Oussama
    Iglauer, Stefan
    Mostaghimi, Peyman
    Paluszny, Adriana
    Pentland, Christopher
    [J]. ADVANCES IN WATER RESOURCES, 2013, 51 : 197 - 216
  • [6] Hansen A., 2016, ARXIV160502874
  • [7] Analysis of Fundamentals of Two-Phase Flow in Porous Media Using Dynamic Pore-Network Models: A Review
    Joekar-Niasar, V.
    Hassanizadeh, S. M.
    [J]. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2012, 42 (18) : 1895 - 1976
  • [8] Bulk flow regimes and fractional flow in 2D porous media by numerical simulations
    Knudsen, HA
    Aker, E
    Hansen, A
    [J]. TRANSPORT IN POROUS MEDIA, 2002, 47 (01) : 99 - 121
  • [9] Krauth W., 2006, STAT MECH ALGORITHMS
  • [10] Landau L.D., 2015, GUIDE MONTE CARLO SI