A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES

被引:217
作者
Antonietti, P. F. [1 ]
da Veiga, L. Beirao [2 ]
Mora, D. [3 ,4 ]
Verani, M. [1 ]
机构
[1] Politecn Milan, MOX Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Milano Statale, Dipartimento Matemat, I-20133 Milan, Italy
[3] Univ Bio Bio, GIMNAP Dept Matemat, Concepcion, Chile
[4] Univ Concepcion, CI2MA, Concepcion, Chile
关键词
virtual elements; mimetic finite differences; Stokes problem; stream function formulation; polygonal meshes; FINITE-DIFFERENCE METHOD; MIMETIC DISCRETIZATION; TOPOLOGY OPTIMIZATION; VOLUME METHOD; EQUATIONS; CONVERGENCE;
D O I
10.1137/13091141X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose and analyze a novel stream formulation of the virtual element method (VEM) for the solution of the Stokes problem. The new formulation hinges upon the introduction of a suitable stream function space (characterizing the divergence free subspace of discrete velocities) and it is equivalent to the velocity-pressure (inf-sup stable) mimetic scheme presented in [L. Beirao da Veiga et al., J. Comput. Phys., 228 (2009), pp. 7215-7232] (up to a suitable reformulation into the VEM framework). Both schemes are thus stable and linearly convergent but the new method results to be more desirable as it employs much less degrees of freedom and it is based on a positive definite algebraic problem. Several numerical experiments assess the convergence properties of the new method and show its computational advantages with respect to the mimetic one.
引用
收藏
页码:386 / 404
页数:19
相关论文
共 38 条
[1]   A MIMETIC DISCRETIZATION OF ELLIPTIC OBSTACLE PROBLEMS [J].
Antonietti, Paola F. ;
da Veiga, Lourenco Beirao ;
Verani, Marco .
MATHEMATICS OF COMPUTATION, 2013, 82 (283) :1379-1400
[2]   Mimetic Discretizations of Elliptic Control Problems [J].
Antonietti, Paola F. ;
Bigoni, Nadia ;
Verani, Marco .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (01) :14-27
[3]   HIERARCHICAL A POSTERIORI ERROR ESTIMATORS FOR THE MIMETIC DISCRETIZATION OF ELLIPTIC PROBLEMS [J].
Antonietti, Paola F. ;
da Veiga, Lourenco Beirao ;
Lovadina, Carlo ;
Verani, Marco .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :654-675
[4]   An analysis of some mixed-enhanced finite element for plane linear elasticity [J].
Auricchio, F ;
da Veiga, LB ;
Lovadina, C ;
Reali, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (27-29) :2947-2968
[5]  
BEIRAO DA VEIGA L., IMA J NUMER IN PRESS
[6]  
Brenner S.C., 2008, MATH THEORY FINITE E, V15
[7]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896
[8]   A family of mimetic finite difference methods on polygonal and polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Simoncini, V .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (10) :1533-1551
[9]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[10]   Virtual Element Methods for plate bending problems [J].
Brezzi, Franco ;
Marini, L. Donatella .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 :455-462