Distributed quantum sensing with mode-entangled spin-squeezed atomic states

被引:67
作者
Malia, Benjamin K. [1 ,2 ]
Wu, Yunfan [3 ]
Martinez-Rincon, Julian [1 ,4 ]
Kasevich, Mark A. [1 ,3 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[3] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[4] Brookhaven Natl Lab, Quantum Informat Sci & Technol Lab, Instrumentat Div, Upton, NY 11973 USA
关键词
INTERFEROMETRY; NOISE;
D O I
10.1038/s41586-022-05363-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum sensors are used for precision timekeeping, field sensing and quantum communication(1-3). Comparisons among a distributed network of these sensors are capable of, for example, synchronizing clocks at different locations(4-8). The performance of a sensor network is limited by technical challenges as well as the inherent noise associated with the quantum states used to realize the network(9). For networks with only spatially localized entanglement at each node, the noise performance of the network improves at best with the square root ofthe number of nodes(10). Here we demonstrate that spatially distributed entanglement between network nodes offers better scaling with network size. A shared quantum nondemolition measurement entangles a clock network with up to four nodes. This network provides up to 4.5 decibels better precision than one without spatially distributed entanglement, and 11.6 decibels improvement as compared to a network of sensors operating at the quantum projection noise limit. We demonstrate the generality of the approach with atomic clock and atomic interferometer protocols, in scientific and technologically relevant configurations optimized for intrinsically differential comparisons of sensor outputs.
引用
收藏
页码:661 / +
页数:10
相关论文
共 49 条
[21]   ATOMIC INTERFEROMETRY USING STIMULATED RAMAN TRANSITIONS [J].
KASEVICH, M ;
CHU, S .
PHYSICAL REVIEW LETTERS, 1991, 67 (02) :181-184
[22]  
Kómár P, 2014, NAT PHYS, V10, P582, DOI [10.1038/NPHYS3000, 10.1038/nphys3000]
[23]   Spatially distributed multipartite entanglement enables EPR steering of atomic clouds [J].
Kunkel, Philipp ;
Pruefer, Maximilian ;
Strobel, Helmut ;
Linnemann, Daniel ;
Froelian, Anika ;
Gasenzer, Thomas ;
Gaerttner, Martin ;
Oberthaler, Markus K. .
SCIENCE, 2018, 360 (6387) :413-415
[24]   Entanglement between two spatially separated atomic modes [J].
Lange, Karsten ;
Peise, Jan ;
Luecke, Bernd ;
Kruse, Ilka ;
Vitagliano, Giuseppe ;
Apellaniz, Iagoba ;
Kleinmann, Matthias ;
Toth, Geza ;
Klempt, Carsten .
SCIENCE, 2018, 360 (6387) :416-418
[25]   Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock [J].
Leroux, Ian D. ;
Schleier-Smith, Monika H. ;
Vuletic, Vladan .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[26]   Distributed quantum phase estimation with entangled photons [J].
Liu, Li-Zheng ;
Zhang, Yu-Zhe ;
Li, Zheng-Da ;
Zhang, Rui ;
Yin, Xu-Fei ;
Fei, Yue-Yang ;
Li, Li ;
Liu, Nai-Le ;
Xu, Feihu ;
Chen, Yu-Ao ;
Pan, Jian-Wei .
NATURE PHOTONICS, 2021, 15 (02) :137-142
[27]   Experimental quantum network coding [J].
Lu, He ;
Li, Zheng-Da ;
Yin, Xu-Fei ;
Zhang, Rui ;
Fang, Xiao-Xu ;
Li, Li ;
Liu, Nai-Le ;
Xu, Feihu ;
Chen, Yu-Ao ;
Pan, Jian-Wei .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[28]  
Malia B. K., 2021, THESIS STANFORD U
[29]   Free Space Ramsey Spectroscopy in Rubidium with Noise below the Quantum Projection Limit [J].
Malia, Benjamin K. ;
Martinez-Rincon, Julian ;
Wu, Yunfan ;
Hosten, Onur ;
Kasevich, Mark A. .
PHYSICAL REVIEW LETTERS, 2020, 125 (04)
[30]  
Malitesta M., 2021, PREPRINT