Finite volume schemes for Hamilton-Jacobi equations

被引:34
作者
Kossioris, G
Makridakis, C [1 ]
Souganidis, PE
机构
[1] Univ Crete, Dept Math, GR-71409 Iraklion, Greece
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] FORTH, Inst Appl & Computat Math, GR-71110 Heraklion, Greece
关键词
D O I
10.1007/s002110050457
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce two classes of monotone finite volume schemes for Hamilton-Jacobi equations. The corresponding approximating functions are piecewise linear defined on a mesh consisting of triangles. The schemes are shown to converge to the viscosity solution of the Hamilton-Jacobi equation. Mathematics Subject Classification (1991): 65M06, 65M12.
引用
收藏
页码:427 / 442
页数:16
相关论文
共 14 条
[1]  
Abgrall R, 1996, COMMUN PUR APPL MATH, V49, P1339, DOI 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO
[2]  
2-B
[3]  
[Anonymous], 1994, MATH APPL
[4]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[5]  
Brenner S. C., 2007, Texts Appl. Math., V15
[6]  
CHATZIPANTELIDI.P, 1998, THESIS U CRETE
[7]  
COCKBURN B, 1994, MATH COMPUT, V63, P77, DOI 10.1090/S0025-5718-1994-1240657-4
[8]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
[9]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[10]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42