In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I)

被引:20
作者
Knop, Matthias [1 ]
Engi, Pascal [1 ]
Lemnaru, Roxana [1 ]
Seebeck, Florian P. [1 ]
机构
[1] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland
基金
欧洲研究理事会;
关键词
copper; formylglycine; kinetic isotope effects; oxygen activation; protein engineering; MULTIPLE SULFATASE DEFICIENCY; COFACTOR-INDEPENDENT DIOXYGENATION; ALDEHYDE TAG; CHEMICAL-MODIFICATION; STRUCTURAL BASIS; PROTEINS; COMPLEXES; MECHANISM; PENICILLAMINE; COORDINATION;
D O I
10.1002/cbic.201500322
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Formylglycine-generating enzymes (FGEs) catalyze O-2-dependent conversion of specific cysteine residues of arylsulfatases and alkaline phosphatases into formylglycine. The ability also to introduce unique aldehyde functions into recombinant proteins makes FGEs a powerful tool for protein engineering. One limitation of this technology is poor in vitro activity of reconstituted FGEs. Although FGEs have been characterized as cofactor-free enzymes we report that the addition of one equivalent of CuI increases catalytic efficiency more than 20-fold and enables the identification of stereoselective C-H bond cleavage at the substrate as the rate-limiting step. These findings remove previous limitations of FGE-based protein engineering and also pose new questions about the catalytic mechanism of this O-2-utilizing enzyme.
引用
收藏
页码:2147 / 2150
页数:4
相关论文
共 38 条
[1]   A Pictet-Spengler ligation for protein chemical modification [J].
Agarwal, Paresh ;
van der Weijden, Joep ;
Sletten, Ellen M. ;
Rabuka, David ;
Bertozzi, Carolyn R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (01) :46-51
[2]   Formylglycine, a Post-Translationally Generated Residue with Unique Catalytic Capabilities and Biotechnology Applications [J].
Appel, Mason J. ;
Bertozzi, Carolyn R. .
ACS CHEMICAL BIOLOGY, 2015, 10 (01) :72-84
[3]   Affinity gradients drive copper to cellular destinations [J].
Banci, Lucia ;
Bertini, Ivano ;
Ciofi-Baffoni, Simone ;
Kozyreva, Tatiana ;
Zovo, Kairit ;
Palumaa, Peep .
NATURE, 2010, 465 (7298) :645-U145
[4]   Multistep, Eight-Electron Oxidation Catalyzed by the Cofactorless Oxidase, PqqC: Identification of Chemical Intermediates and Their Dependence on Molecular Oxygen [J].
Bonnot, Florence ;
Iavarone, Anthony T. ;
Klinman, Judith P. .
BIOCHEMISTRY, 2013, 52 (27) :4667-4675
[5]   Function and structure of a prokaryotic formylglycine-generating enzyme [J].
Carlson, Brian L. ;
Ballister, Edward R. ;
Skordalakes, Emmanuel ;
King, David S. ;
Breidenbach, Mark A. ;
Gilmore, Sarah A. ;
Berger, James M. ;
Bertozzi, Carolyn R. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (29) :20117-20125
[6]   Introducing genetically encoded aldehydes into proteins [J].
Carrico, Isaac S. ;
Carlson, Brian L. ;
Bertozzi, Carolyn R. .
NATURE CHEMICAL BIOLOGY, 2007, 3 (06) :321-322
[7]   The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases [J].
Cosma, MP ;
Pepe, S ;
Annunziata, I ;
Newbold, RF ;
Grompe, M ;
Parenti, G ;
Ballabio, A .
CELL, 2003, 113 (04) :445-456
[8]   Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme [J].
Dierks, T ;
Dickmanns, A ;
Preusser-Kunze, A ;
Schmidt, B ;
Mariappan, M ;
von Figura, K ;
Ficner, R ;
Rudolph, MG .
CELL, 2005, 121 (04) :541-552
[9]   Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-formylglycine generating enzyme [J].
Dierks, T ;
Schmidt, B ;
Borissenko, LV ;
Peng, JH ;
Preusser, A ;
Mariappan, M ;
von Figura, K .
CELL, 2003, 113 (04) :435-444
[10]   Cofactor-independent oxidases and oxygenases [J].
Fetzner, Susanne ;
Steiner, Roberto A. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 86 (03) :791-804