Distributed Bragg Reflectors for GaN-Based Vertical-Cavity Surface-Emitting Lasers

被引:66
作者
Zhang, Cheng [1 ]
ElAfandy, Rami [1 ]
Han, Jung [1 ]
机构
[1] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 08期
关键词
distributed Bragg reflector; VCSEL; GaN; THERMAL-CONDUCTIVITY; MOCVD GROWTH; MIRRORS; FABRICATION; SUPPRESSION; INSERTION; ALN/GAN; DENSITY; EPITAXY; LAYERS;
D O I
10.3390/app9081593
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application GaN based vertical-cavity surface-emitting lasers. Abstract A distributed Bragg reflector (DBR) is a key building block in the formation of semiconductor microcavities and vertical cavity surface emitting lasers (VCSELs). The success in epitaxial GaAs DBR mirrors paved the way for the ubiquitous deployment of III-V VCSELs in communication and mobile applications. However, a similar development of GaN-based blue VCSELs has been hindered by challenges in preparing DBRs that are mass producible. In this article, we provide a review of the history and current status of forming DBRs for GaN VCSELs. In general, the preparation of DBRs requires an optimization of epitaxy/fabrication processes, together with trading off parameters in optical, electrical, and thermal properties. The effort of epitaxial DBRs commenced in the 1990s and has evolved from using AlGaN, AlN, to using lattice-matched AlInN with GaN for DBRs. In parallel, dielectric DBRs have been studied since 2000 and have gone through a few design variations including epitaxial lateral overgrowth (ELO) and vertical external cavity surface emitting lasers (VECSEL). A recent trend is the use of selective etching to incorporate airgap or nanoporous GaN as low-index media in an epitaxial GaN DBR structure. The nanoporous GaN DBR represents an offshoot from the traditional epitaxial approach and may provide the needed flexibility in forming manufacturable GaN VCSELs. The trade-offs and limitations of each approach are also presented.
引用
收藏
页数:20
相关论文
共 127 条
[1]  
[Anonymous], 2004, Optical coating technology
[2]   INTERFACE DISORDER IN ALAS/(AL)GAAS BRAGG REFLECTORS [J].
ASOM, MT ;
GEVA, M ;
LEIBENGUTH, RE ;
CHU, SNG .
APPLIED PHYSICS LETTERS, 1991, 59 (08) :976-978
[3]   PRACTICAL METHODS OF MAKING AND USING MULTILAYER FILTERS [J].
BANNING, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1947, 37 (10) :792-797
[4]   INFRARED LATTICE-VIBRATIONS AND FREE-ELECTRON DISPERSION IN GAN [J].
BARKER, AS ;
ILEGEMS, M .
PHYSICAL REVIEW B, 1973, 7 (02) :743-750
[5]   AN EXPERIMENTAL AND THEORETICAL-STUDY OF THE FORMATION AND MICROSTRUCTURE OF POROUS SILICON [J].
BEALE, MIJ ;
BENJAMIN, JD ;
UREN, MJ ;
CHEW, NG ;
CULLIS, AG .
JOURNAL OF CRYSTAL GROWTH, 1985, 73 (03) :622-636
[6]   Highly Reflective GaN-Based Air-Gap Distributed Bragg Reflectors Fabricated Using AlInN Wet Etching [J].
Bellanger, Mathieu ;
Bousquet, Valerie ;
Christmann, Gabriel ;
Baumberg, Jeremy ;
Kauer, Matthias .
APPLIED PHYSICS EXPRESS, 2009, 2 (12)
[7]   Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality [J].
Berger, C. ;
Dadgar, A. ;
Blaesing, J. ;
Lesnik, A. ;
Veit, P. ;
Schmidt, G. ;
Hempel, T. ;
Christen, J. ;
Krost, A. ;
Strittmatter, A. .
JOURNAL OF CRYSTAL GROWTH, 2015, 414 :105-109
[8]   High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors [J].
Bhattacharyya, A ;
Iyer, S ;
Iliopoulos, E ;
Sampath, AV ;
Cabalu, J ;
Moustakas, TD ;
Friel, I .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (03) :1229-1233
[9]  
Braniste T., 2017, SPIE, V10248
[10]   Current status of AlInN layers lattice-matched to GaN for photonics and electronics [J].
Butte, R. ;
Carlin, J-F ;
Feltin, E. ;
Gonschorek, M. ;
Nicolay, S. ;
Christmann, G. ;
Simeonov, D. ;
Castiglia, A. ;
Dorsaz, J. ;
Buehlmann, H. J. ;
Christopoulos, S. ;
von Hoegersthal, G. Baldassarri Hoeger ;
Grundy, A. J. D. ;
Mosca, M. ;
Pinquier, C. ;
Py, M. A. ;
Demangeot, F. ;
Frandon, J. ;
Lagoudakis, P. G. ;
Baumberg, J. J. ;
Grandjean, N. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (20) :6328-6344