Energy Estimates and Integral Harnack inequality for some doubly nonlinear singular parabolic equations

被引:12
作者
Fornaro, Simona [1 ]
Sosio, Maria [1 ]
Vespri, Vincenzo
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
来源
RECENT TRENDS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS I: EVOLUTION PROBLEMS | 2013年 / 594卷
关键词
D O I
10.1090/conm/594/11785
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some local properties of nonnegative local weak solutions of doubly nonlinear singular parabolic equations and a Harnack inequality in the L-loc(1) topology.
引用
收藏
页码:179 / 199
页数:21
相关论文
共 10 条
[1]  
[Anonymous], USP MAT NAUK
[2]  
DiBenedetto E, 2012, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4614-1584-8
[3]  
DiBenedetto E., 1993, UNIVERSITEXT
[4]  
Fornaro S., 2008, Adv. Differ. Equ, V13, P139
[5]   THE CAUCHY-PROBLEM FOR UT=DELTAUM WHEN O LESS-THAN M LESS-THAN 1 [J].
HERRERO, MA ;
PIERRE, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 291 (01) :145-158
[6]  
Ivanov A. V., 1997, J MATH SCI, V84
[7]  
Ivanov A.V., 1997, J MATH SCI, V83, P22, DOI DOI 10.1007/BF02398459
[8]  
Lions J. L., 1969, QUELQUES METHODES RE
[9]   ON THE LOCAL BEHAVIOR OF SOLUTIONS OF A CERTAIN CLASS OF DOUBLY NONLINEAR PARABOLIC EQUATIONS [J].
VESPRI, V .
MANUSCRIPTA MATHEMATICA, 1992, 75 (01) :65-80
[10]   HARNACK TYPE INEQUALITIES FOR SOLUTIONS OF CERTAIN DOUBLY NONLINEAR PARABOLIC EQUATIONS [J].
VESPRI, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 181 (01) :104-131