Semi-Supervised Eigenbasis Novelty Detection

被引:0
作者
Thompson, David R. [1 ]
Majid, Walid A. [1 ]
Reed, Colorado J. [1 ]
Wagstaff, Kiri L. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
关键词
novelty detection; time series analysis; radio astronomy; machine learning; anomaly detection; radio transients; fast transients; semi-supervised learning;
D O I
10.1002/sam.11148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a semi-supervised online method for novelty detection and evaluate its performance for radio astronomy time series data. Our approach uses sparse, adaptive eigenbases to combine (1) prior knowledge about uninteresting signals with (2) online estimation of the current data properties to enable highly sensitive and precise detection of novel signals. We apply Semi-Supervised Eigenbasis Novelty Detection (SSEND) to the problem of detecting fast transient radio anomalies and compare it to current alternative algorithms. Tests based on observations from the Parkes Multibeam Survey show both effective detection of interesting rare events and robustness to known false alarm anomalies. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 22 条
[11]  
Journée M, 2010, J MACH LEARN RES, V11, P517
[12]  
Keane E., 2008, 3 ESTR WORKSH
[13]  
Lazio J., 2009, DYNAMIC RADIO SKY OP
[14]  
Lim Jongwoo., 2005, Advances in Neural Information Processing Systems, P793
[15]  
Lyne A.G., 1998, Pulsar astronomy
[16]   The Parkes multi-beam pulsar survey - I. Observing and data analysis systems, discovery and timing of 100 pulsars [J].
Manchester, RN ;
Lyne, AG ;
Camilo, F ;
Bell, JF ;
Kaspi, VM ;
D'Amico, N ;
McKay, NPF ;
Crawford, F ;
Stairs, IH ;
Possenti, A ;
Kramer, M ;
Sheppard, DC .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 328 (01) :17-35
[17]   Novelty detection: a review - part 2: neural network based approaches [J].
Markou, M ;
Singh, S .
SIGNAL PROCESSING, 2003, 83 (12) :2499-2521
[18]   Novelty detection: a review - part 1: statistical approaches [J].
Markou, M ;
Singh, S .
SIGNAL PROCESSING, 2003, 83 (12) :2481-2497
[19]   Incremental learning for robust visual tracking [J].
Ross, David A. ;
Lim, Jongwoo ;
Lin, Ruei-Sung ;
Yang, Ming-Hsuan .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 77 (1-3) :125-141
[20]   Estimating the support of a high-dimensional distribution [J].
Schölkopf, B ;
Platt, JC ;
Shawe-Taylor, J ;
Smola, AJ ;
Williamson, RC .
NEURAL COMPUTATION, 2001, 13 (07) :1443-1471