An Artificial Neural Network Approach for Electroencephalographic Signal Classification towards Brain-Computer Interface Implementation

被引:0
作者
Nguyen The Hoang Anh [1 ]
Tran Huy Hoang [1 ]
Do Tien Dung [1 ]
Vu Tat Thang [1 ]
Quyen Bui, T. T. [1 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Informat Technol, 18 Hoang Quoc Viet, Hanoi, Vietnam
来源
2016 IEEE RIVF INTERNATIONAL CONFERENCE ON COMPUTING & COMMUNICATION TECHNOLOGIES, RESEARCH, INNOVATION, AND VISION FOR THE FUTURE (RIVF) | 2016年
关键词
EEG; Artificial Neural Network; Principal Component Analysis; BCI;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain-Computer Interface (BCI) can be realized by translating user's thoughts into control commands to assist paralyzed persons to communicate and control electronic devices. In this work, Electroencephalographic (EEG) signals were recorded from four subjects while they perform different mental states. We present an Artificial-Neural-Network-based approach for the purpose of classifying Electroencephalographic signals into different mental states which are equivalent to different control commands for our BCI implementation. Inputs of the Artificial Neural Network are spectral features dimensionally reduced by Principal Component Analysis. Experimental results show that the proposed method outperforms other classifiers, i.e., K-Nearest Neighbor, Naive Bayesian, Support Vector Machine, and Linear Discriminant Analysis in our EEG dataset with highest classification results on dual and triple mental state problems of 95.36% and 76.84%, respectively.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 50 条
  • [21] Artificial speech synthesizer control by brain-computer interface
    Brumberg, Jonathan S.
    Kennedy, Philip R.
    Guenther, Frank H.
    INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, 2009, : 652 - +
  • [22] Brain-computer interface - registration and analysis of EEG signal, selected problems
    Kolodziej, Marcin
    Rak, Remigiusz J.
    Majkowski, Andrzej
    PRZEGLAD ELEKTROTECHNICZNY, 2009, 85 (12): : 277 - 280
  • [23] Motor imagery classification for Brain-Computer Interfaces through a chaotic neural network
    de Moraes Piazentin, Denis Renato
    Garcia Rosa, Joao Luis
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 4103 - 4108
  • [24] Implementation of genetic algorithms to feature selection for the use of brain-computer interface
    Kolodziej, Marcin
    Majkowski, Andrzej
    Rak, Remigiusz
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 71 - 76
  • [25] Towards a Brain-Computer Interface Controlled by Intrinsic Brain Activations
    Kanoh, Shin'ichiro
    2012 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2012, : 1363 - 1364
  • [26] COMPARISON OF FOUR CLASSIFICATION METHODS FOR BRAIN-COMPUTER INTERFACE
    Frolov, Alexander
    Husek, Dusan
    Bobrov, Pavel
    NEURAL NETWORK WORLD, 2011, 21 (02) : 101 - 115
  • [27] Age and gender classification using brain-computer interface
    Kaur, Barjinder
    Singh, Dinesh
    Roy, Partha Pratim
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (10) : 5887 - 5900
  • [28] Classification of Motor Imagery Signals Using Neural Networks for Applications in Brain-Computer Interface
    Sowjanya, B.
    Jeni, Christina G.
    Divya, B.
    Pradiep, Kumar G. D.
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [29] Electroencephalogram (EEG) signal classification for brain-computer interface using discrete wavelet transform (DWT)
    Rajashekhar, U.
    Neelappa, D.
    Rajesh, L.
    INTERNATIONAL JOURNAL OF INTELLIGENT UNMANNED SYSTEMS, 2022, 10 (01) : 86 - 97
  • [30] An efficient EEG signal classification technique for Brain-Computer Interface using hybrid Deep Learning
    Medhi, Kishore
    Hoque, Nazrul
    Dutta, Sushanta Kabir
    Hussain, Md. Iftekhar
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78