Design and Implementation of an Object Detection System Using Faster R-CNN

被引:9
|
作者
Wang Cheng [1 ]
Peng Zhihao [2 ]
机构
[1] Dalian Neusoft Univ Informat, Shool Digital Arts & Design, Dalian 116626, Peoples R China
[2] Dalian Neusoft Univ Informat, Shool Comp & Software, Dalian 116626, Peoples R China
来源
2019 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2019) | 2019年
关键词
Regional proposal approach; Object detection; Convolutional Neural Network;
D O I
10.1109/ICRIS.2019.00060
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent development in object detection are greatly driven by the success of region proposal approaches and region-based convolutional neural networks (R-CNNs). In this paper, we designed and implemented an object detection system using a faster-CNN method that shares full-image convolutional features with a detection network, so as to enable nearly cost-free region proposals. Development of this system is based on the previous work on Faster R-CNN. Results shows that with this method, we could achieve high accuracy while detecting objects.
引用
收藏
页码:204 / 206
页数:3
相关论文
共 50 条
  • [1] An Automatic Object Detection and Location System applying Faster R-CNN
    Falquete, Rodrigo Bernardes
    Cavalieri, Daniel Cruz
    Pereira, Flavio Garcia
    2018 13TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRY APPLICATIONS (INDUSCON), 2018, : 902 - 908
  • [2] Street Object Detection Based on Faster R-CNN
    Cai, Wendi
    Li, Jiadie
    Xie, Zhongzhao
    Zhao, Tao
    Lu, Kang
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9500 - 9503
  • [3] Feature Enhanced Faster R-CNN for Object Detection
    Jiang, Jun
    Hu, Zhongbing
    MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2020, 11429
  • [4] Comparison of faster R-CNN models for object detection
    Lee, Chungkeun
    Kim, H. Jin
    Oh, Kyeong Won
    2016 16TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2016, : 107 - 110
  • [5] A Supernova Detection Implementation based on Faster R-CNN
    Wu, Tianyuan
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 390 - 393
  • [6] Improved Faster R-CNN for Multi-Scale Object Detection
    Li X.
    Fu C.
    Li X.
    Wang Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (07): : 1095 - 1101
  • [7] Object Detection Algorithm Based on Improved Faster R-CNN
    Zhou Bing
    Li Runxin
    Shang Zhenhong
    Li Xiaowu
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (10)
  • [8] Atrous Faster R-CNN for Small Scale Object Detection
    Guan, Tongfan
    Zhu, Hao
    2017 2ND INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP), 2017, : 16 - 21
  • [9] Improvement of Object Detection Based on Faster R-CNN and YOLO
    Fan, Jiayi
    Lee, JangHyeon
    Jung, InSu
    Lee, YongKeun
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [10] Ganster R-CNN: Occluded Object Detection Network Based on Generative Adversarial Nets and Faster R-CNN
    Sun, Kelei
    Wen, Qiufen
    Zhou, Huaping
    IEEE ACCESS, 2022, 10 : 105022 - 105030