On the use of hierarchical clustering in fuzzy modeling

被引:16
作者
Delgado, M [1 ]
GomezSkarmeta, AF [1 ]
Vila, A [1 ]
机构
[1] UNIV MURCIA,DEPT INFORMAT & SISTEMAS,MURCIA,SPAIN
关键词
hierarchical clustering; unsupervised learning; similarity relations; validity measures; fuzzy modeling;
D O I
10.1016/0888-613X(95)00116-X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Some methods of fuzzy clustering need to use a priori knowledge about the number of fuzzy classes or some other information about the possible distribution of the clusters. A way to improve these methods is to use hierarchical clustering as a preprocessing of the data. This approach does not provide a simple partition of the data set, but a hierarchy of them. In this paper we define several measures using fuzzy-set tools, to establish a ranking between the different possible partitions. The characteristics and properties of these criteria are studied. The paper finishes with some remarks about the use of these results in different unsupervised learning situations.
引用
收藏
页码:237 / 257
页数:21
相关论文
共 25 条
  • [1] BABUSKA R, 1995, P FUZZ IEEE IFES 95
  • [2] BABUSKA R, 1994, P IFAC C AIRTC
  • [3] BACKER EA, 1975, NONSTATISTICAL TYPE
  • [4] BENZECRI JP, 1975, ANAL DONNEES
  • [5] Bezdek J. C., 1978, Fuzzy Sets and Systems, V1, P111, DOI 10.1016/0165-0114(78)90012-X
  • [6] Bezdek J. C., 1992, P IEEE INT C FUZZ SY, P1035
  • [7] Bezdek J.C., 2013, Pattern Recognition With Fuzzy Objective Function Algorithms
  • [8] Bezdek JC., 1992, FUZZY MODELS PATTERN
  • [9] DAVE RN, 1993, P IEEE C FUZZY SYSTE, P1281
  • [10] DELGADO M, 1995, PROCEEDINGS OF 1995 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I-IV, P1807, DOI 10.1109/FUZZY.1995.409926