3D Brain Tumor Segmentation and Survival Prediction Using Ensembles of Convolutional Neural Networks

被引:11
作者
Gonzalez, S. Rosas [1 ]
Zemmoura, I. [1 ]
Tauber, C. [1 ]
机构
[1] Univ Tours, INSERM, U1253, UMR,IBrain, Tours, France
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II | 2021年 / 12659卷
关键词
Tumor segmentation; Survival prediction; Multi-input; Uncertainty estimation; 2.5D convolutions; BraTS;
D O I
10.1007/978-3-030-72087-2_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Networks (CNNs) are the state of the art in many medical image applications, including brain tumor segmentation. However, no successful studies using CNNs have been reported for survival prediction in glioma patients. In this work, we present two different solutions: tumor segmentation and the other for survival prediction. We proposed using an ensemble of asymmetric U-Net like architectures to improve segmentation results in the enhancing tumor region and the use of a DenseNet model for survival prognosis. We quantitatively compare deep learning with classical regression and classification models based on radiomics features and growth tumor models features for survival prediction on the BraTS 2020 database, and we provide an insight into the limitations of these models to accurately predict survival. Our method's current performance on the BraTS 2020 test set is dice scores of 0.80, 0.87, and 0.80 for enhancing tumor, whole tumor, and tumor core, respectively, with an overall dice of 0.82. For the survival prediction task, we got a 0.57 accuracy. In addition, we proposed a voxel-wise uncertainty estimation of our segmentation method that can be used effectively to improve brain tumor segmentation.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 26 条
[1]   Brain Tumor Segmentation and Survival Prediction [J].
Agravat, Rupal R. ;
Raval, Mehul S. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 :338-348
[2]  
[Anonymous], The Journal of Machine Learning Research
[3]  
Bakas S., 2017, CANC IMAGING ARCH, V286, DOI DOI 10.7937/K9/TCIA.2017.GJQ7R0EF
[4]  
Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
[5]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[6]   Patient-Specific Metrics of Invasiveness Reveal Significant Prognostic Benefit of Resection in a Predictable Subset of Gliomas [J].
Baldock, Anne L. ;
Ahn, Sunyoung ;
Rockne, Russell ;
Johnston, Sandra ;
Neal, Maxwell ;
Corwin, David ;
Clark-Swanson, Kamala ;
Sterin, Greg ;
Trister, Andrew D. ;
Malone, Hani ;
Ebiana, Victoria ;
Sonabend, Adam M. ;
Mrugala, Maciej ;
Rockhill, Jason K. ;
Silbergeld, Daniel L. ;
Lai, Albert ;
Cloughesy, Timothy ;
McKhann, Guy M., II ;
Bruce, Jeffrey N. ;
Rostomily, Robert C. ;
Canoll, Peter ;
Swanson, Kristin R. .
PLOS ONE, 2014, 9 (10)
[7]   Glioblastoma: Background, Standard Treatment Paradigms, and Supportive Care Considerations [J].
Ellor, Susan V. ;
Pagano-Young, Teri Ann ;
Avgeropoulos, Nicholas G. .
JOURNAL OF LAW MEDICINE & ETHICS, 2014, 42 (02) :171-182
[8]   Brain Tumor Segmentation with Uncertainty Estimation and Overall Survival Prediction [J].
Feng, Xue ;
Dou, Quan ;
Tustison, Nicholas ;
Meyer, Craig .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 :304-314
[9]  
Huang G, 2018, Arxiv, DOI [arXiv:1608.06993, DOI 10.48550/ARXIV.1608.06993]
[10]   No New-Net [J].
Isensee, Fabian ;
Kickingereder, Philipp ;
Wick, Wolfgang ;
Bendszus, Martin ;
Maier-Hein, Klaus H. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 :234-244