Direct Characteristic-Function Tomography of Quantum States of the Trapped-Ion Motional Oscillator

被引:41
作者
Fluhmann, C. [1 ]
Home, J. P. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, Otto Stern Weg 1, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
NUMERICAL DIFFERENTIATION; ENTANGLEMENT; INFORMATION;
D O I
10.1103/PhysRevLett.125.043602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We implement direct readout of the symmetric characteristic function of quantum states of the motional oscillation of a trapped calcium ion. Suitably chosen internal state rotations combined with internal statedependent displacements, based on bichromatic laser fields, map the expectation value of the real or imaginary part of the displacement operator to the internal states, which are subsequently read out. Combining these results provides full information about the symmetric characteristic function. We characterize the technique by applying it to a range of archetypal quantum oscillator states, including displaced and squeezed Gaussian states as well as two and three component superpositions of displaced squeezed states. For each, we discuss relevant features of the characteristic function and Wigner phasespace quasiprobability distribution. The direct reconstruction of these highly nonclassical oscillator states using a reduced number of measurements is an essential tool for understanding and optimizing the control of oscillator systems for quantum sensing and quantum information applications.
引用
收藏
页数:6
相关论文
共 61 条
  • [11] Campagne-Ibarcq P., ARXIV 1907 12487
  • [12] Quantum tomography in position and momentum space
    Casanova, J.
    Lopez, C. E.
    Garcia-Ripoll, J. J.
    Roos, C. F.
    Solano, E.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (08)
  • [13] NUMERICAL DIFFERENTIATION AND REGULARIZATION
    CULLUM, J
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (02) : 254 - &
  • [14] Quantum Bochner's theorem for phase spaces built on projective representations
    Dangniam, Ninnat
    Ferrie, Christopher
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (11)
  • [15] Quantum Parametric Oscillator with Trapped Ions
    Ding, Shiqian
    Maslennikov, Gleb
    Habltzel, Roland
    Loh, Huanqian
    Matsukevich, Dzmitry
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (15)
  • [16] Encoding a qubit in a trapped-ion mechanical oscillator
    Fluhmann, C.
    Nguyen, T. L.
    Marinelli, M.
    Negnevitsky, V.
    Mehta, K.
    Home, J. P.
    [J]. NATURE, 2019, 566 (7745) : 513 - +
  • [17] Sequential Modular Position and Momentum Measurements of a Trapped Ion Mechanical Oscillator
    Fluhmann, C.
    Negnevitsky, V.
    Marinelli, M.
    Home, J. P.
    [J]. PHYSICAL REVIEW X, 2018, 8 (02):
  • [18] Quantum Simulation of the Klein Paradox with Trapped Ions
    Gerritsma, R.
    Lanyon, B. P.
    Kirchmair, G.
    Zaehringer, F.
    Hempel, C.
    Casanova, J.
    Garcia-Ripoll, J. J.
    Solano, E.
    Blatt, R.
    Roos, C. F.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (06)
  • [19] Quantum simulation of the Dirac equation
    Gerritsma, R.
    Kirchmair, G.
    Zaehringer, F.
    Solano, E.
    Blatt, R.
    Roos, C. F.
    [J]. NATURE, 2010, 463 (7277) : 68 - U72
  • [20] Encoding a qubit in an oscillator
    Gottesman, D
    Kitaev, A
    Preskill, J
    [J]. PHYSICAL REVIEW A, 2001, 64 (01): : 123101 - 1231021