Influence of dust particles on positive column of DC glow discharge

被引:17
作者
Tian, Ruihuan [1 ,2 ]
Yuan, Chengxun [1 ]
Li, Hui [2 ]
Liang, Yonggan [1 ,2 ]
Wu, Jian [2 ]
Kudryavtsev, A. A. [1 ,3 ]
Kirsanov, G. V. [3 ]
Zhou, Zhongxiang [1 ]
Jiang, Yongyuan [1 ]
机构
[1] Harbin Inst Technol, Dept Phys, Harbin 150001, Heilongjiang, Peoples R China
[2] China Res Inst Radio Wave Propagat, Natl Key Lab Electromagnet Environm LEME, Beijing 102206, Peoples R China
[3] St Petersburg State Univ, Phys Dept, St Petersburg 198504, Russia
基金
中国国家自然科学基金;
关键词
Dust - Electric losses - Electron density measurement - Poisson equation - Electron temperature - Glow discharges - Collisional plasmas;
D O I
10.1063/1.5021289
中图分类号
O59 [应用物理学];
学科分类号
摘要
A self-consistent model of a DC glow discharge with dust particles based on orbital motion limited theory, collision enhanced collection approximation, and a fluid approach extended by energy conservation equation is presented. The model indicates the influence of dust particles on radical distributions of plasma parameters in positive columns. Dust particles are embedded in the positive column with the density profile prescribed as a given step function. It is shown that with the increase in dust particle density, electron density and the radical electric field decrease in the dust region. For high dust density, especially when the loss of ions and electrons on the dust surface exceeds their production in ionization collisions in the dust region, a local minimum of electron density forms in the discharge axis and the radical electric field obtained from the Poisson equation becomes non-monotonous. The addition of dust increases the longitudinal electric field and electron temperature simultaneously to compensate the electron and ion loss on dust particles and preserve the discharge. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 29 条
[1]  
[Anonymous], 2005, PRINCIPLES PLASMA DI, DOI [10.1002/0471724254, DOI 10.1002/0471724254]
[2]   Dusty plasma for nanotechnology [J].
Boufendi, L. ;
Jouanny, M. Ch ;
Kovacevic, E. ;
Berndt, J. ;
Mikikian, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (17)
[3]   Dust-void formation in a dc glow discharge [J].
Fedoseev, A. V. ;
Sukhinin, G. I. ;
Dosbolayev, M. K. ;
Ramazanov, T. S. .
PHYSICAL REVIEW E, 2015, 92 (02)
[4]  
Fedoseev A. V., 2013, P 31 INT C PHEN ION
[5]   Strong coupling effects on the relationship between internal energy and pressure for two-dimensional liquid dusty plasmas [J].
Feng, Yan ;
Li, Wei ;
Wang, Qiaoling ;
Lin, Wei .
PHYSICS OF PLASMAS, 2016, 23 (11)
[6]   Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models [J].
Hagelaar, GJM ;
Pitchford, LC .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2005, 14 (04) :722-733
[7]  
Khrapak SA, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.056405
[8]   Particle charge in the bulk of gas discharges -: art. no. 016406 [J].
Khrapak, SA ;
Ratynskaia, SV ;
Zobnin, AV ;
Usachev, AD ;
Yaroshenko, VV ;
Thoma, MH ;
Kretschmer, M ;
Höfner, H ;
Morfill, GE ;
Petrov, OF ;
Fortov, VE .
PHYSICAL REVIEW E, 2005, 72 (01)
[9]   Observation of Ω mode electron heating in dusty argon radio frequency discharges [J].
Killer, Carsten ;
Bandelow, Gunnar ;
Matyash, Konstantin ;
Schneider, Ralf ;
Melzer, Andre .
PHYSICS OF PLASMAS, 2013, 20 (08)
[10]   Limits of validity for orbital-motion-limited theory for a small floating collector [J].
Lampe, M .
JOURNAL OF PLASMA PHYSICS, 2001, 65 :171-180