Viral Protein-Pseudotyped and siRNA-Electroporated Extracellular Vesicles for Cancer Immunotherapy

被引:63
作者
Liu, Houli [1 ]
Huang, Lili [1 ]
Mao, Mingchuan [1 ]
Ding, Jingjing [1 ]
Wu, Guanghao [1 ]
Fan, Wenlin [1 ]
Yang, Tongren [1 ]
Zhang, Mengjie [1 ]
Huang, Yuanyu [1 ]
Xie, Hai-Yan [1 ]
机构
[1] Beijing Inst Technol, Sch Life Sci, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
cancer immunotherapy; extracellular vesicles; M1; macrophages; siRNA; vesicular stomatitis virus glycoprotein; EXOSOMES; DELIVERY; GENE; MICROVESICLES; MEMBRANE; VACCINE; VIRUS; BRAIN;
D O I
10.1002/adfm.202006515
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Extracellular vesicles (EVs) have shown great potential in drug delivery, disease diagnosis, and treatment owing to their versatile native features and functions. RNA interference (RNAi) therapeutics that block the programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) pathway have attracted increasing interest for the treatment of various cancers. Here, immunoregulatory EVs are developed by decorating M1-macrophage-derived EVs (M1 EV) with vesicular stomatitis virus glycoprotein (VSV-G), a pH-responsive viral fusion protein, and electroporating anti-PD-L1 siRNA (siPD-L1) into the EVs. After administration to CT26 tumor-bearing mice, this virus-mimic nucleic acid engineered EVs (siRNA@V-M1 EV) can target tumor tissues, which is attributed to the natural tumor-homing property of M1 EV. Then, the fusion of VSV-G with cells facilitates the direct release of siPD-L1 into the cytoplasm and triggers robust gene silencing, leading to the efficient block of PD-L1/PD-1 interaction and then the elevation of CD8(+)T cell population. Meanwhile, the M1 EVs and IFN-gamma secreted by the CD8(+)T cells promote the repolarization of M2 tumor-associated macrophages to M1 macrophages. The combination of PD-L1/PD-1 pathway blocking, T cell recognition reconstructing, and M1 macrophage repolarization via multifunctional EVs can achieve satisfactory antitumor efficacy in this tumor model, showing potential as a new modality to fight cancers.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J].
Alvarez-Erviti, Lydia ;
Seow, Yiqi ;
Yin, HaiFang ;
Betts, Corinne ;
Lakhal, Samira ;
Wood, Matthew J. A. .
NATURE BIOTECHNOLOGY, 2011, 29 (04) :341-U179
[2]   Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC [J].
Besse, Benjamin ;
Charrier, Melinda ;
Lapierre, Valerie ;
Dansin, Eric ;
Lantz, Olivier ;
Planchard, David ;
Le Chevalier, Thierry ;
Livartoski, Alain ;
Barlesik, Fabrice ;
Laplanche, Agnes ;
Ploix, Stephanie ;
Vimond, Nadege ;
Peguillet, Isabelle ;
Thery, Clotilde ;
Lacroix, Ludovic ;
Zoernig, Inka ;
Dhodapkar, Kavita ;
Dhodapkar, Madhav ;
Viaud, Sophie ;
Soria, Jean-Charles ;
Reiners, Katrin S. ;
von Strandmann, Elke Pogge ;
Vely, Frederic ;
Rusakiewicz, Sylvie ;
Eggermont, Alexander ;
Pitt, Jonathan M. ;
Zitvogel, Laurence ;
Chaput, Nathalie .
ONCOIMMUNOLOGY, 2016, 5 (04)
[3]   Exosomes from M1-Polarized Macrophages Potentiate the Cancer Vaccine by Creating a Pro-inflammatory Microenvironment in the Lymph Node [J].
Cheng, Lifang ;
Wang, Yuhua ;
Huang, Leaf .
MOLECULAR THERAPY, 2017, 25 (07) :1665-1675
[4]   M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors [J].
Choo, Yeon Woong ;
Kang, Mikyung ;
Kim, Han Young ;
Han, Jin ;
Kang, Seokyung ;
Lee, Ju-Ro ;
Jeong, Gun-Jae ;
Kwon, Sung Pil ;
Song, Seuk Young ;
Go, Seokhyeong ;
Jung, Mungyo ;
Hong, Jihye ;
Kim, Byung-Soo .
ACS NANO, 2018, 12 (09) :8977-8993
[5]   Viral vector-mediated RNA interference [J].
Couto, Linda B. ;
High, Katherine A. .
CURRENT OPINION IN PHARMACOLOGY, 2010, 10 (05) :534-542
[6]   Strategies, design, and chemistry in siRNA delivery systems [J].
Dong, Yizhou ;
Siegwart, Daniel J. ;
Anderson, Daniel G. .
ADVANCED DRUG DELIVERY REVIEWS, 2019, 144 :133-147
[7]   Extracellular vesicles: biology and emerging therapeutic opportunities [J].
EL Andaloussi, Samir ;
Maeger, Imre ;
Breakefield, Xandra O. ;
Wood, Matthew J. A. .
NATURE REVIEWS DRUG DISCOVERY, 2013, 12 (05) :348-358
[8]   Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds [J].
Farooqi, Ammad Ahmad ;
Desai, Nishil N. ;
Qureshi, Muhammad Zahid ;
Nogueira Librelotto, Daniele Rubert ;
Gasparri, Maria Luisa ;
Bishayee, Anupam ;
Nabavi, Seyed Mohammad ;
Curti, Valeria ;
Daglia, Maria .
BIOTECHNOLOGY ADVANCES, 2018, 36 (01) :328-334
[9]   Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape [J].
Gilleron, Jerome ;
Querbes, William ;
Zeigerer, Anja ;
Borodovsky, Anna ;
Marsico, Giovanni ;
Schubert, Undine ;
Manygoats, Kevin ;
Seifert, Sarah ;
Andree, Cordula ;
Stoeter, Martin ;
Epstein-Barash, Hila ;
Zhang, Ligang ;
Koteliansky, Victor ;
Fitzgerald, Kevin ;
Fava, Eugenio ;
Bickle, Marc ;
Kalaidzidis, Yannis ;
Akinc, Akin ;
Maier, Martin ;
Zerial, Marino .
NATURE BIOTECHNOLOGY, 2013, 31 (07) :638-U102
[10]   Tunneling Nanotubular Expressways for Ultrafast and Accurate M1 Macrophage Delivery of Anticancer Drugs to Metastatic Ovarian Carcinoma [J].
Guo, Ling ;
Zhang, Ye ;
Yang, Zeping ;
Peng, Hui ;
Wei, Runxiu ;
Wang, Cuifeng ;
Feng, Min .
ACS NANO, 2019, 13 (02) :1078-1096