Multiple periodic solutions of ordinary differential equations with double resonance

被引:17
作者
Su, Jiabao [2 ]
Zhao, Leiga [1 ]
机构
[1] Acad Sinica, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
关键词
Morse theory; Periodic solution; Resonance; BOUNDARY-VALUE-PROBLEMS; CRITICAL-POINT THEORY;
D O I
10.1016/j.na.2008.02.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we Study by Morse theory the existence of multiple periodic solutions of a class of ordinary differential equation with double resonance at infinity between two Consecutive eigenvalues and with resonance at origin. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1520 / 1527
页数:8
相关论文
共 14 条
[1]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[2]  
Chang K.-c., 1993, Progress in Nonlinear Differential Equations and their Applications, V6
[3]   PERIODIC-SOLUTIONS OF NONLINEAR DIFFERENTIAL-EQUATIONS WITH DOUBLE-RESONANCE [J].
FABRY, C ;
FONDA, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1990, 157 :99-116
[4]  
Gromoll D., 1969, Topology, V8, P361
[5]  
LANDESMAN EM, 1970, J MATH MECH, V19, P609
[6]   APPLICATIONS OF LOCAL LINKING TO CRITICAL-POINT THEORY [J].
LI, SJ ;
WILLEM, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (01) :6-32
[7]   Computation of critical groups in elliptic boundary-value problems where the asymptotic limits may not exist [J].
Li, SJ ;
Perera, K ;
Su, JB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :721-732
[8]  
LI SJ, 1984, KEXUE TONGBAO, V17
[9]  
Mawhin J., 1989, Critical Point Theory and Hamiltonian Systems
[10]  
Rabinowitz P. H., 1986, CBMS, V65