Tropical hyperelliptic curves

被引:36
作者
Chan, Melody [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Tropical geometry; Tropical curves; Hyperelliptic curves; Metric graphs; Harmonic morphisms; LINEAR-SYSTEMS; RIEMANN-ROCH; GEOMETRY;
D O I
10.1007/s10801-012-0369-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the locus of tropical hyperelliptic curves inside the moduli space of tropical curves of genus g. We define a harmonic morphism of metric graphs and prove that a metric graph is hyperelliptic if and only if it admits a harmonic morphism of degree 2 to a metric tree. This generalizes the work of Baker and Norine on combinatorial graphs to the metric case. We then prove that the locus of 2-edge-connected genus g tropical hyperelliptic curves is a (2g-1)-dimensional stacky polyhedral fan whose maximal cells are in bijection with trees on g-1 vertices with maximum valence 3. Finally, we show that the Berkovich skeleton of a classical hyperelliptic plane curve satisfying a certain tropical smoothness condition is a standard ladder of genus g.
引用
收藏
页码:331 / 359
页数:29
相关论文
共 23 条
[1]  
Amini O., ARXIV11125134
[2]  
[Anonymous], 2011, The On-Line Encyclopedia of Integer Sequences
[3]  
Baker M., ARXIV11040320
[4]   Riemann-Roch and Abel-Jacobi theory on a finite graph [J].
Baker, Matthew ;
Norine, Serguei .
ADVANCES IN MATHEMATICS, 2007, 215 (02) :766-788
[5]   Metric properties of the tropical Abel-Jacobi map [J].
Baker, Matthew ;
Faber, Xander .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 33 (03) :349-381
[6]   Specialization of linear systems from curves to graphs [J].
Baker, Matthew .
ALGEBRA & NUMBER THEORY, 2008, 2 (06) :613-653
[7]   Harmonic Morphisms and Hyperelliptic Graphs [J].
Baker, Matthew ;
Norine, Serguei .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (15) :2914-2955
[8]  
BIERI R, 1984, J REINE ANGEW MATH, V347, P168
[9]   On the tropical Torelli map [J].
Brannetti, Silvia ;
Melo, Margarida ;
Viviani, Filippo .
ADVANCES IN MATHEMATICS, 2011, 226 (03) :2546-2586
[10]  
Caporaso L., 2011, HDB MODULI IN PRESS