Constraining Precipitation Susceptibility of Warm-, Ice-, and Mixed-Phase Clouds with Microphysical Equations

被引:18
|
作者
Glassmeier, Franziska [1 ]
Lohmann, Ulrike [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland
关键词
AEROSOL; PARAMETERIZATION; WATER; NUCLEI; LIQUID; MODEL;
D O I
10.1175/JAS-D-16-0008.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The strength of the effective anthropogenic climate forcing from aerosol cloud interactions is related to the susceptibility of precipitation to aerosol effects. Precipitation susceptibility dlnP/dlnN has been proposed as a metric to quantify the effect of aerosol-induced changes in cloud droplet number N on warm precipitation rate P. Based on the microphysical rate equations of the Seifert and Beheng two-moment bulk microphysics scheme, susceptibilities of warm-, mixed-, and ice-phase precipitation and cirrus sedimentation to cloud droplet and ice crystal number are estimated. The estimation accounts for microphysical adjustments to the initial perturbation in N. For warm rain, dlnP/dlnN < -2aut/(aut + acc) is found, which depends on the rates of autoconversion (aut) and accretion (acc). Cirrus sedimentation susceptibility corresponds to the exponent of crystal sedimentation velocity with a value of -0.2. For mixed-phase clouds, several microphysical contributions that explain low precipitation susceptibilities are identified: (i) Because of the larger hydrometeor sizes involved, mixed-phase collection processes are less sensitive to changes in hydrometeor size than auto conversion. (ii) Only a subset of precipitation formation processes is sensitive to droplet or crystal number. (iii) Effects on collection processes and diffusional growth compensate. (iv) Adjustments in cloud liquid and ice amount compensate the effect of changes in ice crystal and cloud droplet number. (v) Aerosol perturbations that simultaneously affect ice crystal and droplet number have opposing effects.
引用
收藏
页码:5003 / 5023
页数:21
相关论文
共 50 条
  • [31] Ice residual properties in mixed-phase clouds at the high-alpine Jungfraujoch site
    Kupiszewski, Piotr
    Zanatta, Marco
    Mertes, Stephan
    Vochezer, Paul
    Lloyd, Gary
    Schneider, Johannes
    Schenk, Ludwig
    Schnaiter, Martin
    Baltensperger, Urs
    Weingartner, Ernest
    Gysel, Martin
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (20) : 12343 - 12362
  • [32] Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions
    Ovchinnikov, Mikhail
    Ackerman, Andrew S.
    Avramov, Alexander
    Cheng, Anning
    Fan, Jiwen
    Fridlind, Ann M.
    Ghan, Steven
    Harrington, Jerry
    Hoose, Corinna
    Korolev, Alexei
    McFarquhar, Greg M.
    Morrison, Hugh
    Paukert, Marco
    Savre, Julien
    Shipway, Ben J.
    Shupe, Matthew D.
    Solomon, Amy
    Sulia, Kara
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2014, 6 (01) : 223 - 248
  • [33] High ice concentration observed in tropical maritime stratiform mixed-phase clouds with top temperatures warmer than-8 °C
    Yang, Jing
    Wang, Zhien
    Heymsfield, Andrew J.
    DeMott, Paul J.
    Twohy, Cynthia H.
    Suski, Kaitlyn J.
    Toohey, Darin W.
    ATMOSPHERIC RESEARCH, 2020, 233
  • [34] Ice nucleation through immersion freezing in mixed-phase stratiform clouds: Theory and numerical simulations
    de Boer, Gijs
    Hashino, Tempei
    Tripoli, Gregory J.
    ATMOSPHERIC RESEARCH, 2010, 96 (2-3) : 315 - 324
  • [35] Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds
    Norgren, Matthew S.
    de Boer, Gijs
    Shupe, Matthew D.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (18) : 13345 - 13361
  • [36] The contribution of black carbon to global ice nucleating particle concentrations relevant to mixed-phase clouds
    Schill, Gregory P.
    DeMott, Paul J.
    Emerson, Ethan W.
    Rauker, Anne Marie C.
    Kodros, John K.
    Suski, Kaitlyn J.
    Hill, Thomas C. J.
    Levin, Ezra J. T.
    Pierce, Jeffrey R.
    Farmer, Delphine K.
    Kreidenweis, Sonia M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (37) : 22705 - 22711
  • [37] The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds
    Wiacek, A.
    Peter, T.
    Lohmann, U.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (18) : 8649 - 8667
  • [38] Sensitivity of mixed-phase moderately deep convective clouds to parameterizations of ice formation - an ensemble perspective
    Miltenberger, Annette K.
    Field, Paul R.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (05) : 3627 - 3642
  • [39] The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch
    Lloyd, G.
    Choularton, T. W.
    Bower, K. N.
    Gallagher, M. W.
    Connolly, P. J.
    Flynn, M.
    Farrington, R.
    Crosier, J.
    Schlenczek, O.
    Fugal, J.
    Henneberger, J.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (22) : 12953 - 12969
  • [40] Sensitivity of cirrus and mixed-phase clouds to the ice nuclei spectra in McRAS-AC: single column model simulations
    Betancourt, R. Morales
    Lee, D.
    Oreopoulos, L.
    Sud, Y. C.
    Barahona, D.
    Nenes, A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (22) : 10679 - 10692