Partition of a set of integers into subsets, with prescribed sums

被引:7
作者
Chen, FL [1 ]
Fu, HL
Wang, YJ
Zhou, JQ
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
[2] Qufu Normal Univ, Inst Operat Res, Shandong 276800, Peoples R China
[3] Anhui Ind Univ, Dept Comp Sci, Maanshan 243002, Anhui, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2005年 / 9卷 / 04期
关键词
partition; integer partition; graph decomposition;
D O I
10.11650/twjm/1500407887
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonincreasing sequence of positive integers < m(1), m(2),(...), m(k)> is said to be n-realizable if the set I-n = {1, 2,(...), n} can be partitioned into k mutually disjoint subsets S-1, S-2,(...), S-k such that Sigma(x is an element of Si) x = m(i) for each 1. <= i <= k. In this paper, we will prove. that a nonincreasing sequence of positive integers < m(1), m(2),(...),m(k)> is n-realizable under the. conditions that Sigma(i=1)(k) m(i) = ((n+1)(2)) and m(k-1) >= n.
引用
收藏
页码:629 / 638
页数:10
相关论文
共 5 条
[1]  
Alavi Y., 1987, Congr. Numer, V58, P7
[2]   DISJOINT SUBSETS OF INTEGERS HAVING A CONSTANT SUM [J].
ANDO, K ;
GERVACIO, S ;
KANO, M .
DISCRETE MATHEMATICS, 1990, 82 (01) :7-11
[3]  
Faudree R.J., 1987, Congr. Numer, V59, P49
[4]  
Fu H.L., 1992, B ICA, V6, P57
[5]   ON THE ASCENDING STAR SUBGRAPH DECOMPOSITION OF STAR FORESTS [J].
MA, KJ ;
ZHOU, HS ;
ZHOU, JQ .
COMBINATORICA, 1994, 14 (03) :307-320