The Morley element for fourth order elliptic equations in any dimensions

被引:135
作者
Ming, W
Xu, JC [1 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
nonconforming finite element; forth order elliptic equation; biharmonic; Morley element;
D O I
10.1007/s00211-005-0662-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the well-known nonconforming Morley element for biharmonic equations in two spatial dimensions is extended to any higher dimensions in a canonical fashion. The general n-dimensional Morley element consists of all quadratic polynomials defined on each n-simplex with degrees of freedom given by the integral average of the normal derivative on each (n-1)-subsimplex and the integral average of the function value on each (n-2)-subsimplex. Explicit expressions of nodal basis functions are also obtained for this element on general n-simplicial grids. Convergence analysis is given for this element when it is applied as a nonconforming finite element discretization for the biharmonic equation.
引用
收藏
页码:155 / 169
页数:15
相关论文
共 9 条
[1]  
Bazeley G. P., 1965, P C MATR METH STRUCT, P547
[2]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[3]  
Lascaux P., 1985, RAIRO ANAL NUMER R, VR-1, P9
[4]   TRIANGULAR EQUILIBRIUM ELEMENT IN SOLUTION OF PLATE BENDING PROBLEMS [J].
MORLEY, LSD .
AERONAUTICAL QUARTERLY, 1968, 19 :149-&
[5]  
RUAS V, 1988, NUMER MATH, V52, P33, DOI 10.1007/BF01401020
[6]  
Shi Z., 1990, MATH NUMER SIN, V12, P113
[7]  
Strang G., 1973, ANAL FINITE ELEMENT, P318
[8]  
WANG M, 2002, SIAM J NUMER ANAL, V39, P263
[9]  
WANG M, IN PRESS MATH COMP