The Robin-Laplacian problem on varying domains

被引:9
|
作者
Bucur, Dorin [1 ]
Giacomini, Alessandro [2 ]
Trebeschi, Paola [2 ]
机构
[1] Univ Savoie Mt Blanc, Math Lab, Inst Univ France, CNRS,UMR 5127, Campus Sci, F-73376 Le Bourget Du Lac, France
[2] Univ Brescia, Sez Matemat, DICATAM, Via Branze 43, I-25123 Brescia, Italy
关键词
26A45; 35J20; 47J30;
D O I
10.1007/s00526-016-1073-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a stability result for elliptic equations under general Dirichlet-Robin boundary conditions with respect to the variation of the domain under the Hausdorff complementary topology. As a by-product, under the additional assumption of the convergence of the perimeters, we obtain a stability result for the classical Robin-Laplacian.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] The Robin–Laplacian problem on varying domains
    Dorin Bucur
    Alessandro Giacomini
    Paola Trebeschi
    Calculus of Variations and Partial Differential Equations, 2016, 55
  • [2] STABILITY RESULTS FOR THE ROBIN-LAPLACIAN ON NONSMOOTH DOMAINS
    Bucur, Dorin
    Giacomini, Alessandro
    Trebeschi, Paola
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (04) : 4591 - 4624
  • [3] Minimization of the k-th eigenvalue of the Robin-Laplacian
    Bucur, Dorin
    Giacomini, Alessandro
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (03) : 643 - 687
  • [4] Faber–Krahn Inequalities for the Robin-Laplacian: A Free Discontinuity Approach
    Dorin Bucur
    Alessandro Giacomini
    Archive for Rational Mechanics and Analysis, 2015, 218 : 757 - 824
  • [5] Faber-Krahn Inequalities for the Robin-Laplacian: A Free Discontinuity Approach
    Bucur, Dorin
    Giacomini, Alessandro
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (02) : 757 - 824
  • [6] Minimization of the k-th eigenvalue of the Robin-Laplacian with perimeter constraint
    Cito, Simone
    Giacomini, Alessandro
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (09)
  • [7] A Sharp estimate for the first Robin-Laplacian eigenvalue with negative boundary parameter
    Bucur D.
    Ferone V.
    Nitsch C.
    Trombetti C.
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2019, 30 (04): : 665 - 676
  • [8] A Spectral Isoperimetric Inequality on the n-Sphere for the Robin-Laplacian with Negative Boundary Parameter
    P. Acampora
    A. Celentano
    E. Cristoforoni
    C. Nitsch
    C. Trombetti
    The Journal of Geometric Analysis, 2025, 35 (6):
  • [9] Generalized nonlocal Robin Laplacian on arbitrary domains
    Nouhayla Ait Oussaid
    Khalid Akhlil
    Sultana Ben Aadi
    Mourad El Ouali
    Archiv der Mathematik, 2021, 117 : 675 - 686
  • [10] Tunneling for the Robin Laplacian in smooth planar domains
    Helffer, Bernard
    Kachmar, Ayman
    Raymond, Nicolas
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (01)