Commodity Fuels from Biomass through Pretreatment and Torrefaction: Effects of Mineral Content on Torrefied Fuel Characteristics and Quality

被引:138
作者
Saddawi, A. [1 ]
Jones, J. M. [1 ]
Williams, A. [1 ]
Le Coeur, C. [1 ]
机构
[1] Univ Leeds, Energy & Resources Res Inst, Sch Proc Environm & Mat Engn, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
PYROLYSIS; POTASSIUM; GRINDABILITY; COMBUSTION; BEHAVIOR;
D O I
10.1021/ef2016649
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Torrefaction of biomass is rapidly gaining popularity as a viable pretreatment for use with co-combustion with coal or with other thermochemical conversion processes. This work explores the effects of combining pretreatment washing techniques using water, ammonium acetate, and hydrochloric acid. Four biomasses were studied, short-rotation coppiced willow, eucalyptus, Miscanthus, and wheat straw, all in chipped or chopped form. The resultant fuels, after the pretreatments, were characterized for ultimate analysis, proximate analysis, heating value, and pyrolysis behavior (via thermogravimetric analysis), and mass and energy yields in a fixed-bed torrefier were measured. The ease of removal of certain metals, Na, K, Mg, and Ca, as well as PO43-, SO42-, and Cl- was assessed by ion chromatography on the leachates from the water washing, and influences on fouling behavior were predicted. Fuel ashes (both prior to and after torrefaction) were also assessed in the ash fusion test, a probe for slagging behavior. Water washing resulted in a high removal of alkali metal ions and chloride, particularly for the herbaceous biomass, where up to 92% of sodium and 62% of potassium were removed, together with up to 100% of the chloride. There was a general trend of higher concentrations of water-soluble species for the herbaceous biomass compared to the woody biomass, although there were a few exceptions, such as phosphate. As a consequence of water washing, the alkali indices (an index for fouling) decreased markedly. Because the ash composition changes as a result of the different washing procedures, the ash melting behavior also changes, and hemisphere temperatures (oxidizing conditions) were seen to increase substantially, by approximately 400 C for wheat straw to 1500 degrees C and 290 degrees C for Miscanthus to 1490 degrees C. Different pretreatment methods also influenced the progress of torrefaction. After all washings, the fuels became less reactive to thermal degradation, and therefore, mass (and energy yields) increased during a fixed torrefaction operation. This could be explained through measurement of the pyrolysis kinetics; removal of key catalytic metal species (such as Na and K, in particular) by washing results in slower reaction rates. Water washing was seen as the most beneficial pretreatment, because it produced the most marked improvement in the torrefied fuel in terms of its ash fusion test behavior.
引用
收藏
页码:6466 / 6474
页数:9
相关论文
共 29 条
[1]  
[Anonymous], CHLORINE COAL COMBUS
[2]   The art, science, and technology of charcoal production [J].
Antal, MJ ;
Gronli, M .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (08) :1619-1640
[3]   Influence of torrefaction on the grindability and reactivity of woody biomass [J].
Arias, B. ;
Pevida, C. ;
Fermoso, J. ;
Plaza, M. G. ;
Rubiera, F. ;
Pis, J. J. .
FUEL PROCESSING TECHNOLOGY, 2008, 89 (02) :169-175
[4]  
Bergman P.C.A., 2005, P 14 EUR BIOM C EXH
[5]  
Bergman P.C.A., 2005, Torrefied biomass for entrained-flow gasification of biomass
[6]   An investigation of the grindability of two torrefied energy crops [J].
Bridgeman, T. G. ;
Jones, J. M. ;
Williams, A. ;
Waldron, D. J. .
FUEL, 2010, 89 (12) :3911-3918
[7]  
Bridgeman T. G., 2009, P 17 EUR BIOM C EXH
[8]  
Bridgeman T. G., 2008, THESIS U LEEDS LEEDS
[9]   Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels [J].
Bryers, RW .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 1996, 22 (01) :29-120
[10]  
Darvell L. I., 2005, WORLD RENEWABLE ENER