Engineering a Robust Quantum Spin Hall State in Graphene via Adatom Deposition

被引:413
作者
Weeks, Conan [1 ]
Hu, Jun [2 ]
Alicea, Jason [2 ]
Franz, Marcel [1 ]
Wu, Ruqian [2 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
来源
PHYSICAL REVIEW X | 2011年 / 1卷 / 02期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; TRANSPORT;
D O I
10.1103/PhysRevX.1.021001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The 2007 discovery of quantized conductance in HgTe quantum wells delivered the field of topological insulators (TIs) its first experimental confirmation. While many three-dimensional TIs have since been identified, HgTe remains the only known two-dimensional system in this class. Difficulty fabricating HgTe quantum wells has, moreover, hampered their widespread use. With the goal of breaking this logjam, we provide a blueprint for stabilizing a robust TI state in a more readily available two-dimensional material-graphene. Using symmetry arguments, density functional theory, and tight-binding simulations, we predict that graphene endowed with certain heavy adatoms realizes a TI with substantial band gap. For indium and thallium, our most promising adatom candidates, a modest 6% coverage produces an estimated gap near 80 K and 240 K, respectively, which should be detectable in transport or spectroscopic measurements. Engineering such a robust topological phase in graphene could pave the way for a new generation of devices for spintronics, ultra-low-dissipation electronics, and quantum information processing.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 52 条
  • [1] Spin-split electronic states in graphene: Effects due to lattice deformation, Rashba effect, and adatoms by first principles
    Abdelouahed, Samir
    Ernst, A.
    Henk, J.
    Maznichenko, I. V.
    Mertig, I.
    [J]. PHYSICAL REVIEW B, 2010, 82 (12)
  • [2] Quantum spin Hall effect and topological phase transition in HgTe quantum wells
    Bernevig, B. Andrei
    Hughes, Taylor L.
    Zhang, Shou-Cheng
    [J]. SCIENCE, 2006, 314 (5806) : 1757 - 1761
  • [3] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [4] First-principles calculation of the spin-orbit splitting in graphene
    Boettger, J. C.
    Trickey, S. B.
    [J]. PHYSICAL REVIEW B, 2007, 75 (12):
  • [5] ABSENCE OF BACKSCATTERING IN THE QUANTUM HALL-EFFECT IN MULTIPROBE CONDUCTORS
    BUTTIKER, M
    [J]. PHYSICAL REVIEW B, 1988, 38 (14): : 9375 - 9389
  • [6] Impurity-Induced Spin-Orbit Coupling in Graphene
    Castro Neto, A. H.
    Guinea, F.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (02)
  • [7] First-principles study of metal adatom adsorption on graphene
    Chan, Kevin T.
    Neaton, J. B.
    Cohen, Marvin L.
    [J]. PHYSICAL REVIEW B, 2008, 77 (23):
  • [8] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215
  • [9] Boron nitride substrates for high-quality graphene electronics
    Dean, C. R.
    Young, A. F.
    Meric, I.
    Lee, C.
    Wang, L.
    Sorgenfrei, S.
    Watanabe, K.
    Taniguchi, T.
    Kim, P.
    Shepard, K. L.
    Hone, J.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (10) : 722 - 726
  • [10] Josephson current and multiple Andreev reflections in graphene SNS junctions
    Du, Xu
    Skachko, Ivan
    Andrei, Eva Y.
    [J]. PHYSICAL REVIEW B, 2008, 77 (18):